The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature
We consider non-stationary 1-D flow of a compressible viscous heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2014-10, Vol.19, p.19-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider non-stationary 1-D flow of a compressible viscous heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature are introduced. This problem has a unique generalized solution locally in time. With the help of this result and using the principle of extension we prove a global-in-time existence theorem. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2014.02.006 |