The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature

We consider non-stationary 1-D flow of a compressible viscous heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2014-10, Vol.19, p.19-30
1. Verfasser: Mujakovic, Nermina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider non-stationary 1-D flow of a compressible viscous heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature are introduced. This problem has a unique generalized solution locally in time. With the help of this result and using the principle of extension we prove a global-in-time existence theorem.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2014.02.006