A New and Fast Orthogonal Linear Discriminant Analysis on Undersampled Problems
Dimensionality reduction has become a ubiquitous preprocessing step in many applications. Linear discriminant analysis (LDA) has been known to be one of the most optimal dimensionality reduction methods for classification. However, a main disadvantage of LDA is that the so-called total scatter matri...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2010-01, Vol.32 (4), p.2274-2297 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dimensionality reduction has become a ubiquitous preprocessing step in many applications. Linear discriminant analysis (LDA) has been known to be one of the most optimal dimensionality reduction methods for classification. However, a main disadvantage of LDA is that the so-called total scatter matrix must be nonsingular. But, in many applications, the scatter matrices can be singular since the data points are from a very high-dimensional space, and thus usually the number of the data samples is smaller than the data dimension. This is known as the under-sampled problem. Many generalized LDA methods have been proposed in the past to overcome this singularity problem. There is a commonality for these generalized LDA methods; that is, they compute the optimal linear transformations by computing some eigen-decompositions and involving some matrix inversions. However, the eigen-decomposition is computationally expensive, and the involvement of matrix inverses may lead to the methods not numerically stable if the associated matrices are ill-conditioned. Hence, many existing LDA methods have high computational cost and have potential numerical instability problems. In this paper we present a new orthogonal LDA method for the undersampled problem. The main features of our proposed LDA method include the following: (i) the optimal transformation matrix is obtained easily by only orthogonal transformations without computing any eigen-decomposition and matrix inverse, and, consequently, our LDA method is inverse-free and numerically stable; (ii) our LDA method is implemented by using several QR factorizations and is a fast one. The effectiveness of our new method is illustrated by some real-world data sets. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/090766772 |