Preparation and characterization of lithium–titanate pebbles by solid-state reaction extrusion and spherodization techniques for fusion reactor

For the development of TBM for fusion reactors, lithium containing ceramics as against the metal are preferred as tritium breeding material. Lithium titanate (Li 2TiO 3) is one such chosen ceramic tritium breeder. Li 2TiO 3 pebbles are conventionally prepared by sol–gel process and wet process. Soli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2012, Vol.87 (1), p.7-12
Hauptverfasser: Mandal, D., Sathiyamoorthy, D., Rao, V. Govardhana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the development of TBM for fusion reactors, lithium containing ceramics as against the metal are preferred as tritium breeding material. Lithium titanate (Li 2TiO 3) is one such chosen ceramic tritium breeder. Li 2TiO 3 pebbles are conventionally prepared by sol–gel process and wet process. Solid state reaction of lithium carbonate with titanium dioxide is preferred route for the bulk production of Li 2TiO 3. Thermo-gravimetric and differential thermal analysis (TG–DTA) techniques have been used in the present study to understand the solid state reaction of intimate mixture of lithium carbonate and titanium dioxide. It was found out that single phase lithium titanate (Li 2TiO 3) is produced at 750 °C and the reaction is completed in 6 h. Fine powders of lithium titanate obtained after milling and classification were mixed with aqueous solution of PVA to prepare green pebbles of desired size and shape. The pebbles were subsequently sintered at 900 °C and the effect of sintering time on the properties of sintered pebbles was studied. The reaction mechanisms and the product qualities obtained by the solid state reaction, extrusion and spherodization techniques are discussed in this paper.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2011.08.006