A Posteriori Design Change Analysis for Complex Engineering Projects

Engineering changes are an inherent part of the design and development process and can play an important role in driving the overall success of the system. This work seeks to create a multidimensional understanding of change activity in large systems that can help in improving future design and deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2011-10, Vol.133 (10)
Hauptverfasser: Siddiqi, Afreen, Bounova, Gergana, de Weck, Olivier L, Keller, Rene, Robinson, Bob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineering changes are an inherent part of the design and development process and can play an important role in driving the overall success of the system. This work seeks to create a multidimensional understanding of change activity in large systems that can help in improving future design and development efforts. This is achieved by a posteriori analysis of design changes. It is proposed that by constructing a temporal, spatial, and financial view of change activity within and across these dimensions, it becomes possible to gain useful insights regarding the system of study. Engineering change data from the design and development of a multiyear, multibillion dollar development project of an offshore oil and gas production system is used as a case study in this work. It is shown that the results from such an analysis can be used for identifying better design and management strategies (in similar systems and projects) and for targeting design improvement in identified subsystems. The isolation and identification of change hotspots can be helpful in uncovering potential systemic design issues that may be prevalent. Similarly, strategic engineering and management decisions can be made if the major cost drivers are known.
ISSN:1050-0472
1528-9001
DOI:10.1115/1.4004379