Asymptotic behaviour of solutions to some pseudoparabolic equations

The aim of this paper is to investigate the behaviour as t → ∞ of solutions to the Cauchy problem u t − △ u t − v △ u − ( b , ∇ u ) = ∇ ⋅ F ( u ) , u ( x , 0 ) = u 0 ( x ) , where v > 0 is a fixed constant, t ≥ 0 , x ∈ Ω , Ω is a bounded domain in R n . We will first establish an a priori estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2012-02, Vol.25 (2), p.111-114
Hauptverfasser: Liu, Yan, Jiang, Weisheng, Huang, Falun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to investigate the behaviour as t → ∞ of solutions to the Cauchy problem u t − △ u t − v △ u − ( b , ∇ u ) = ∇ ⋅ F ( u ) , u ( x , 0 ) = u 0 ( x ) , where v > 0 is a fixed constant, t ≥ 0 , x ∈ Ω , Ω is a bounded domain in R n . We will first establish an a priori estimate. Then, we establish the global existence, uniqueness and continuous dependence of the weak solution for the Sobolev–Galpern type equation with the Dirichlet boundary.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2011.07.012