Asymptotic behaviour of solutions to some pseudoparabolic equations
The aim of this paper is to investigate the behaviour as t → ∞ of solutions to the Cauchy problem u t − △ u t − v △ u − ( b , ∇ u ) = ∇ ⋅ F ( u ) , u ( x , 0 ) = u 0 ( x ) , where v > 0 is a fixed constant, t ≥ 0 , x ∈ Ω , Ω is a bounded domain in R n . We will first establish an a priori estimat...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2012-02, Vol.25 (2), p.111-114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to investigate the behaviour as
t
→
∞
of solutions to the Cauchy problem
u
t
−
△
u
t
−
v
△
u
−
(
b
,
∇
u
)
=
∇
⋅
F
(
u
)
,
u
(
x
,
0
)
=
u
0
(
x
)
, where
v
>
0
is a fixed constant,
t
≥
0
,
x
∈
Ω
,
Ω
is a bounded domain in
R
n
. We will first establish an a priori estimate. Then, we establish the global existence, uniqueness and continuous dependence of the weak solution for the Sobolev–Galpern type equation with the Dirichlet boundary. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2011.07.012 |