Synthesis and characterization of SnO2 nanoparticles embedded in silica by ion implantation

Tin dioxide nanoparticles embedded in silica matrix were fabricated by ion implantation combined with thermal oxidation. Silica substrate was implanted with a 150keV Sn+ ions beam with a fluence of 1.0A-1017 ions/cm2. The sample was annealed for 1h in a conventional furnace at a temperature of 800A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2010-10, Vol.268 (19), p.3063-3065
Hauptverfasser: Tagliente, M.A., Bello, V., Pellegrini, G., Mattei, G., Mazzoldi, P., Massaro, M., Carbone, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tin dioxide nanoparticles embedded in silica matrix were fabricated by ion implantation combined with thermal oxidation. Silica substrate was implanted with a 150keV Sn+ ions beam with a fluence of 1.0A-1017 ions/cm2. The sample was annealed for 1h in a conventional furnace at a temperature of 800A degree C under flowing O2 gas. According to the structural characterization performed by X-ray diffraction and transmission electron microscopy techniques, metallic tetragonal tin nanoparticles with a volume average size of 12.8nm were formed in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the tin nanoparticles into tin dioxide nanoparticles with a preferential migration toward the surface of the matrix, where large and coalesced nanoparticles were observed, and a small diffusion toward the bulk, where smaller nanoparticles were found.
ISSN:0168-583X
DOI:10.1016/j.nimb.2010.05.042