Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements
The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1−xZnxFe2O4, as well as the filler (Ni1−xZnxFe2O4) incorporated rubber ferrite composites (RFCs). Ni1−xZnxFe2O4 (where) (bix)varies from 0 to 1 in steps of 0.2 were prepared by us...
Gespeichert in:
Veröffentlicht in: | Bulletin of materials science 2002-12, Vol.25 (7), p.599-607 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1−xZnxFe2O4, as well as the filler (Ni1−xZnxFe2O4) incorporated rubber ferrite composites (RFCs). Ni1−xZnxFe2O4 (where) (bix)varies from 0 to 1 in steps of 0.2 were prepared by usual ceramic techniques. They were then incorporated into a butyl rubber matrix according to a specific recipe. The a.c. electrical conductivity (σa.c) calculations were carried out by using the data available from dielectric measurements and by employing a simple relationship. The a.c. conductivity values were found to be of the order of 10−3 S/m. Analysis of the results shows that σa.c. increases with increase of frequency and the change is same for both ceramic Ni1−xZnxFe2O4 and RFCs. σa.c increases initially with the increase of zinc content and then decreases with increase of zinc. Same behaviour is observed for RFCs too. The dependence of σa.c on the volume fraction of the magnetic filler was also studied and it was found that the a.c. conductivity of RFCs increases with increase of volume fraction of the magnetic filler. Temperature dependence of conductivity was studied for both ceramic and rubber ferrite composites. Conductivity shows a linear dependence with temperature in the case of ceramic samples. |
---|---|
ISSN: | 0250-4707 0973-7669 |
DOI: | 10.1007/BF02707892 |