Intelligent High-Interaction Web Honeypots Based on URL Conversion Scheme

Vulnerabilities in web applications expose computer networks to security threats. For example, attackers use a large number of normal user websites as hopping sites, which are illegally operated using malware distributed by abusing vulnerabilities in web applications on these websites, for attacking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2011/05/01, Vol.E94.B(5), pp.1339-1347
Hauptverfasser: YAGI, Takeshi, TANIMOTO, Naoto, HARIU, Takeo, ITOH, Mitsutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vulnerabilities in web applications expose computer networks to security threats. For example, attackers use a large number of normal user websites as hopping sites, which are illegally operated using malware distributed by abusing vulnerabilities in web applications on these websites, for attacking other websites and user terminals. Thus, the security threats, resulting from vulnerabilities in web applications prevent service providers from constructing secure networking environments. To protect websites from attacks based on the vulnerabilities of web applications, security vendors and service providers collect attack information using web honeypots, which masquerade as vulnerable systems. To collect all accesses resulting from attacks that include further network attacks by malware, such as downloaders, vendors and providers use high-interaction web honeypots, which are composed of vulnerable systems with surveillance functions. However, conventional high-interaction web honeypots can collect only limited information and malware from attacks, whose paths in the destination URLs do not match the path structure of the web honeypot since these attacks are failures. To solve this problem, we propose a scheme in which the destination URLs of these attacks are corrected by determining the correct path from the path structure of the web honeypot. Our Internet investigation revealed that 97% of attacks are failures. However, we confirmed that approximately 50% of these attacks will succeed with our proposed scheme. We can use much more information with this scheme to protect websites than with conventional high-interaction web honeypots because we can collect complete information and malware from these attacks.
ISSN:0916-8516
1745-1345
1745-1345
DOI:10.1587/transcom.E94.B.1339