Storage capacity of phase-coded patterns in sparse neural networks

We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing–depende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2011-07, Vol.95 (2), p.28006
Hauptverfasser: Scarpetta, S, Giacco, F, de Candia, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing–dependent plasticity (STDP). We find that, after learning, the spontaneous dynamics of the network replays one of the stored dynamical patterns, depending on the network initialization. We study the network capacity as a function of topology, and find that a small-world–like topology may be optimal, as a compromise between the high wiring cost of long-range connections and the capacity increase.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/95/28006