MAXIMUM PRINCIPLES FOR OPTIMAL CONTROL OF FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS
We present various versions of the maximum principle for optimal control of forward- backward stochastic differential equations (SDE) with jumps. Our study is motivated by risk minimization via g-expectations. We first prove a general sufficient maximum principle for optimal control with partial inf...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2009-01, Vol.48 (5), p.2945-2976 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present various versions of the maximum principle for optimal control of forward- backward stochastic differential equations (SDE) with jumps. Our study is motivated by risk minimization via g-expectations. We first prove a general sufficient maximum principle for optimal control with partial information of a stochastic system consisting of a forward and a backward SDE driven by Levy processes. We then present a Malliavin calculus approach which allows us to handle non-Markovian systems. Finally, we give examples of applications. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/080739781 |