Feature tracking and matching in video using programmable graphics hardware

This paper describes novel implementations of the KLT feature tracking and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2011-01, Vol.22 (1), p.207-217
Hauptverfasser: Sinha, Sudipta N., Frahm, Jan-Michael, Pollefeys, Marc, Genc, Yakup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes novel implementations of the KLT feature tracking and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by exploiting parallelism provided by modern programmable graphics hardware, the CPU is freed up to run other computations in parallel. Our GPU-based KLT implementation tracks about a thousand features in real-time at 30 Hz on 1,024 × 768 resolution video which is a 20 times improvement over the CPU. The GPU-based SIFT implementation extracts about 800 features from 640 × 480 video at 10 Hz which is approximately 10 times faster than an optimized CPU implementation.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-007-0105-z