Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems

In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2010-06, Vol.16 (7-8), p.961-982
Hauptverfasser: Yi, S., Nelson, P.W., Ulsoy, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 982
container_issue 7-8
container_start_page 961
container_title Journal of vibration and control
container_volume 16
creator Yi, S.
Nelson, P.W.
Ulsoy, A.G.
description In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.
doi_str_mv 10.1177/1077546309341102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671224926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546309341102</sage_id><sourcerecordid>1977424454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</originalsourceid><addsrcrecordid>eNp1kUFLw0AQhYMoWKt3j4tevER3die7ybGUVoWCoBWPYZNMakqSrbtJof_elHqQQk_z4H3vMfCC4Bb4I4DWT8C1jlBJnkgE4OIsGIFGCEUSq_NBD3a49y-DK-_XnHNE4KPgfVatqN2auic28b5atQ21HdtWhnXfxBamych17IvN-zbvKtuy0jo2tW3nbM1syZZVQ2FBtdmxj53vqPHXwUVpak83f3ccfM5ny-lLuHh7fp1OFmEuVdKFwJFQCZSFjnlUGq4zFEIXseBZkudIEUEs4xJVksQIZZFJ1CaCwmgypY7lOHg49G6c_enJd2lT-Zzq2rRke5-C0iAEJkIN6N0Rura9a4fvUsUlBxGLfd_9KQgSrVEgRjhQ_EDlznrvqEw3rmqM26XA0_0S6fESQyQ8RLxZ0b_SU_wvjrqFKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977424454</pqid></control><display><type>article</type><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><source>SAGE Complete</source><creator>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</creator><creatorcontrib>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</creatorcontrib><description>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546309341102</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control methods ; Control systems ; Control systems design ; Control theory ; Controllers ; DDE ; Delay ; Design ; Design engineering ; Differential equations ; Eigenvalues ; Feedback ; Feedback control ; Feedback control systems ; Linear systems ; Mathematical analysis ; Matrix methods ; Nitrous oxide ; Ordinary differential equations ; Time delay systems ; Time invariant systems ; Vibration ; Vibration analysis</subject><ispartof>Journal of vibration and control, 2010-06, Vol.16 (7-8), p.961-982</ispartof><rights>2010 SAGE Publications</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jun/Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</citedby><cites>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546309341102$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546309341102$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><title>Journal of vibration and control</title><description>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</description><subject>Control methods</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>DDE</subject><subject>Delay</subject><subject>Design</subject><subject>Design engineering</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nitrous oxide</subject><subject>Ordinary differential equations</subject><subject>Time delay systems</subject><subject>Time invariant systems</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFLw0AQhYMoWKt3j4tevER3die7ybGUVoWCoBWPYZNMakqSrbtJof_elHqQQk_z4H3vMfCC4Bb4I4DWT8C1jlBJnkgE4OIsGIFGCEUSq_NBD3a49y-DK-_XnHNE4KPgfVatqN2auic28b5atQ21HdtWhnXfxBamych17IvN-zbvKtuy0jo2tW3nbM1syZZVQ2FBtdmxj53vqPHXwUVpak83f3ccfM5ny-lLuHh7fp1OFmEuVdKFwJFQCZSFjnlUGq4zFEIXseBZkudIEUEs4xJVksQIZZFJ1CaCwmgypY7lOHg49G6c_enJd2lT-Zzq2rRke5-C0iAEJkIN6N0Rura9a4fvUsUlBxGLfd_9KQgSrVEgRjhQ_EDlznrvqEw3rmqM26XA0_0S6fESQyQ8RLxZ0b_SU_wvjrqFKA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Yi, S.</creator><creator>Nelson, P.W.</creator><creator>Ulsoy, A.G.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><author>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Control methods</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>DDE</topic><topic>Delay</topic><topic>Design</topic><topic>Design engineering</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nitrous oxide</topic><topic>Ordinary differential equations</topic><topic>Time delay systems</topic><topic>Time invariant systems</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, S.</au><au>Nelson, P.W.</au><au>Ulsoy, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</atitle><jtitle>Journal of vibration and control</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>16</volume><issue>7-8</issue><spage>961</spage><epage>982</epage><pages>961-982</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546309341102</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2010-06, Vol.16 (7-8), p.961-982
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_miscellaneous_1671224926
source SAGE Complete
subjects Control methods
Control systems
Control systems design
Control theory
Controllers
DDE
Delay
Design
Design engineering
Differential equations
Eigenvalues
Feedback
Feedback control
Feedback control systems
Linear systems
Mathematical analysis
Matrix methods
Nitrous oxide
Ordinary differential equations
Time delay systems
Time invariant systems
Vibration
Vibration analysis
title Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20Assignment%20via%20the%20Lambert%20W%20Function%20for%20Control%20of%20Time-delay%20Systems&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Yi,%20S.&rft.date=2010-06-01&rft.volume=16&rft.issue=7-8&rft.spage=961&rft.epage=982&rft.pages=961-982&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546309341102&rft_dat=%3Cproquest_cross%3E1977424454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977424454&rft_id=info:pmid/&rft_sage_id=10.1177_1077546309341102&rfr_iscdi=true