Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems
In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasib...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2010-06, Vol.16 (7-8), p.961-982 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 982 |
---|---|
container_issue | 7-8 |
container_start_page | 961 |
container_title | Journal of vibration and control |
container_volume | 16 |
creator | Yi, S. Nelson, P.W. Ulsoy, A.G. |
description | In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods. |
doi_str_mv | 10.1177/1077546309341102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671224926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546309341102</sage_id><sourcerecordid>1977424454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</originalsourceid><addsrcrecordid>eNp1kUFLw0AQhYMoWKt3j4tevER3die7ybGUVoWCoBWPYZNMakqSrbtJof_elHqQQk_z4H3vMfCC4Bb4I4DWT8C1jlBJnkgE4OIsGIFGCEUSq_NBD3a49y-DK-_XnHNE4KPgfVatqN2auic28b5atQ21HdtWhnXfxBamych17IvN-zbvKtuy0jo2tW3nbM1syZZVQ2FBtdmxj53vqPHXwUVpak83f3ccfM5ny-lLuHh7fp1OFmEuVdKFwJFQCZSFjnlUGq4zFEIXseBZkudIEUEs4xJVksQIZZFJ1CaCwmgypY7lOHg49G6c_enJd2lT-Zzq2rRke5-C0iAEJkIN6N0Rura9a4fvUsUlBxGLfd_9KQgSrVEgRjhQ_EDlznrvqEw3rmqM26XA0_0S6fESQyQ8RLxZ0b_SU_wvjrqFKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977424454</pqid></control><display><type>article</type><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><source>SAGE Complete</source><creator>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</creator><creatorcontrib>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</creatorcontrib><description>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546309341102</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control methods ; Control systems ; Control systems design ; Control theory ; Controllers ; DDE ; Delay ; Design ; Design engineering ; Differential equations ; Eigenvalues ; Feedback ; Feedback control ; Feedback control systems ; Linear systems ; Mathematical analysis ; Matrix methods ; Nitrous oxide ; Ordinary differential equations ; Time delay systems ; Time invariant systems ; Vibration ; Vibration analysis</subject><ispartof>Journal of vibration and control, 2010-06, Vol.16 (7-8), p.961-982</ispartof><rights>2010 SAGE Publications</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jun/Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</citedby><cites>FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546309341102$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546309341102$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><title>Journal of vibration and control</title><description>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</description><subject>Control methods</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>DDE</subject><subject>Delay</subject><subject>Design</subject><subject>Design engineering</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nitrous oxide</subject><subject>Ordinary differential equations</subject><subject>Time delay systems</subject><subject>Time invariant systems</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFLw0AQhYMoWKt3j4tevER3die7ybGUVoWCoBWPYZNMakqSrbtJof_elHqQQk_z4H3vMfCC4Bb4I4DWT8C1jlBJnkgE4OIsGIFGCEUSq_NBD3a49y-DK-_XnHNE4KPgfVatqN2auic28b5atQ21HdtWhnXfxBamych17IvN-zbvKtuy0jo2tW3nbM1syZZVQ2FBtdmxj53vqPHXwUVpak83f3ccfM5ny-lLuHh7fp1OFmEuVdKFwJFQCZSFjnlUGq4zFEIXseBZkudIEUEs4xJVksQIZZFJ1CaCwmgypY7lOHg49G6c_enJd2lT-Zzq2rRke5-C0iAEJkIN6N0Rura9a4fvUsUlBxGLfd_9KQgSrVEgRjhQ_EDlznrvqEw3rmqM26XA0_0S6fESQyQ8RLxZ0b_SU_wvjrqFKA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Yi, S.</creator><creator>Nelson, P.W.</creator><creator>Ulsoy, A.G.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</title><author>Yi, S. ; Nelson, P.W. ; Ulsoy, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-104e46243d7805fa07b4227d820b9cc4e5e1838f4699841fdb347a51da7eaf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Control methods</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>DDE</topic><topic>Delay</topic><topic>Design</topic><topic>Design engineering</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nitrous oxide</topic><topic>Ordinary differential equations</topic><topic>Time delay systems</topic><topic>Time invariant systems</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, S.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, S.</au><au>Nelson, P.W.</au><au>Ulsoy, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems</atitle><jtitle>Journal of vibration and control</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>16</volume><issue>7-8</issue><spage>961</spage><epage>982</epage><pages>961-982</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546309341102</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2010-06, Vol.16 (7-8), p.961-982 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671224926 |
source | SAGE Complete |
subjects | Control methods Control systems Control systems design Control theory Controllers DDE Delay Design Design engineering Differential equations Eigenvalues Feedback Feedback control Feedback control systems Linear systems Mathematical analysis Matrix methods Nitrous oxide Ordinary differential equations Time delay systems Time invariant systems Vibration Vibration analysis |
title | Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20Assignment%20via%20the%20Lambert%20W%20Function%20for%20Control%20of%20Time-delay%20Systems&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Yi,%20S.&rft.date=2010-06-01&rft.volume=16&rft.issue=7-8&rft.spage=961&rft.epage=982&rft.pages=961-982&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546309341102&rft_dat=%3Cproquest_cross%3E1977424454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977424454&rft_id=info:pmid/&rft_sage_id=10.1177_1077546309341102&rfr_iscdi=true |