Eigenvalue Assignment via the Lambert W Function for Control of Time-delay Systems
In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasib...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2010-06, Vol.16 (7-8), p.961-982 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods. |
---|---|
ISSN: | 1077-5463 1741-2986 |
DOI: | 10.1177/1077546309341102 |