Phase Transformation and Its Effects on Mechanical Properties and Pitting Corrosion Resistance of 2205 Duplex Stainless Steel

The effects of phase transformation on mechanical properties and pitting corrosion of 2205 duplex stainless steel were investigated. The amount of a phase in the test specimen varied up to a maximum of 6 % by thermal treatment at 850 ℃ for up to 60 min. The results showed that ~ phase markedly incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2010-11, Vol.17 (11), p.67-72
Hauptverfasser: ZOU, De-ning, HAN, Ying, ZHANG, Weil, FAN, Guang-wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of phase transformation on mechanical properties and pitting corrosion of 2205 duplex stainless steel were investigated. The amount of a phase in the test specimen varied up to a maximum of 6 % by thermal treatment at 850 ℃ for up to 60 min. The results showed that ~ phase markedly increased the hardness and decreased the impact toughness of the test steel. But the increasing tendency of the ultimate tensile strength and the yield strength was not obvious, while the total elongation abruptly decreased with the aging time from 5 to 60 min. SEM impact microfractograph analysis revealed that the types of impact fracture changed from ductile mode to transcrystalline mode when the specimens were aged for 5-60 min. Furthermore, the extent of pitting potential reducing was found to be strongly temperature dependent, more pronounced at the higher temperature. During the incubation period of σ phase nucleation, the pitting corrosion test temperature and the aging time had collaborative effects on evidently displacing the pitting potential towards less noble values. After 15 min, the higher temperature contributed more to decreasing the pitting potential than the aging time.
ISSN:1006-706X
2210-3988
DOI:10.1016/S1006-706X(10)60172-0