A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications

Most of the recent hydrometeor classification schemes are based on fuzzy logic. When the input radar observations are noisy, the output classification could also be noisy, since the process is bin based and the information from neighboring radar cells is not considered. This paper employs cluster an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2015-01, Vol.32 (1), p.22-47
Hauptverfasser: Bechini, Renzo, Chandrasekar, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most of the recent hydrometeor classification schemes are based on fuzzy logic. When the input radar observations are noisy, the output classification could also be noisy, since the process is bin based and the information from neighboring radar cells is not considered. This paper employs cluster analysis, in combination with fuzzy logic, to improve the hydrometeor classification from dual-polarization radars using a multistep approach. The first step involves a radar-based optimization of an input temperature profile from auxiliary data. Then a first-guess fuzzy logic processing produces the classification to initiate a cluster analysis with contiguity and penalty constraints. The result of the cluster analysis is eventually processed to identify the regions populated with adjacent bins assigned to the same hydrometeor class. Finally, the set of connected regions is passed to the fuzzy logic algorithm for the final classification, exploiting the statistical sample composed by the distribution of the dual-polarization and temperature observations within the regions. Example applications to radar in different environments and meteorological situations, and using different operating frequency bands—namely, S, C, and X bands—are shown. The results are discussed with specific attention to the robustness of the method and the segregation of the data space. Furthermore, the sensitivity to noise and bias in the input variables is also analyzed.
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-14-00097.1