Degeneracy Loci and Polynomial Equation Solving

Let V be a smooth, equidimensional, quasi-affine variety of dimension r over C , and let F be a ( p × s ) matrix of coordinate functions of C [ V ] , where s ≥ p + r . The pair ( V , F ) determines a vector bundle E of rank s - p over W : = { x ∈ V ∣ rk F ( x ) = p } . We associate with ( V , F ) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2015-02, Vol.15 (1), p.159-184
Hauptverfasser: Bank, Bernd, Giusti, Marc, Heintz, Joos, Lecerf, Grégoire, Matera, Guillermo, Solernó, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let V be a smooth, equidimensional, quasi-affine variety of dimension r over C , and let F be a ( p × s ) matrix of coordinate functions of C [ V ] , where s ≥ p + r . The pair ( V , F ) determines a vector bundle E of rank s - p over W : = { x ∈ V ∣ rk F ( x ) = p } . We associate with ( V , F ) a descending chain of degeneracy loci of E (the generic polar varieties of V represent a typical example of this situation). The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we will design and that solves a series of computational elimination problems that can be formulated in this framework. We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-014-9214-z