Degeneracy Loci and Polynomial Equation Solving
Let V be a smooth, equidimensional, quasi-affine variety of dimension r over C , and let F be a ( p × s ) matrix of coordinate functions of C [ V ] , where s ≥ p + r . The pair ( V , F ) determines a vector bundle E of rank s - p over W : = { x ∈ V ∣ rk F ( x ) = p } . We associate with ( V , F ) a...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2015-02, Vol.15 (1), p.159-184 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
V
be a smooth, equidimensional, quasi-affine variety of dimension
r
over
C
, and let
F
be a
(
p
×
s
)
matrix of coordinate functions of
C
[
V
]
, where
s
≥
p
+
r
. The pair
(
V
,
F
)
determines a vector bundle
E
of rank
s
-
p
over
W
:
=
{
x
∈
V
∣
rk
F
(
x
)
=
p
}
. We associate with
(
V
,
F
)
a descending chain of degeneracy loci of
E
(the generic polar varieties of
V
represent a typical example of this situation). The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we will design and that solves a series of computational elimination problems that can be formulated in this framework. We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-014-9214-z |