Bayesian Group-Sparse Modeling and Variational Inference

In this paper, we present a general class of multivariate priors for group-sparse modeling within the Bayesian framework. We show that special cases of this class correspond to multivariate versions of several classical priors used for sparse modeling. Hence, this general prior formulation is helpfu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-06, Vol.62 (11), p.2906-2921
Hauptverfasser: Babacan, S. Derin, Nakajima, Shinichi, Do, Minh N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a general class of multivariate priors for group-sparse modeling within the Bayesian framework. We show that special cases of this class correspond to multivariate versions of several classical priors used for sparse modeling. Hence, this general prior formulation is helpful in analyzing the properties of different modeling approaches and their connections. We derive the estimation procedures with these priors using variational inference for fully Bayesian estimation. In addition, we discuss the differences between the proposed inference and deterministic inference approaches with these priors. Finally, we show the flexibility of this modeling by considering several extensions such as multiple measurements, within-group correlations, and overlapping groups.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2319775