Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking
We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasi...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2011-08, Vol.21 (8), p.085014-13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. Although biopotential electrode systems are not without their challenges, the non-invasive access to neural information, along with the potential for automation with associated electronic and software development, is precisely what makes this technology an excellent candidate for the next generation in diagnostic, therapeutic, and prosthetic devices. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/21/8/085014 |