An exactly solvable PT-symmetric dimer from a Hamiltonian system of nonlinear oscillators with gain and loss

We show that a pair of coupled nonlinear oscillators, of which one oscillator has positive and the other one negative damping of equal rate, can form a Hamiltonian system. Small-amplitude oscillations in this system are governed by a PT-symmetric nonlinear Schrodinger dimer with linear and cubic cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2014-07, Vol.47 (28), p.1-18
Hauptverfasser: Barashenkov, I V, Gianfreda, Mariagiovanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a pair of coupled nonlinear oscillators, of which one oscillator has positive and the other one negative damping of equal rate, can form a Hamiltonian system. Small-amplitude oscillations in this system are governed by a PT-symmetric nonlinear Schrodinger dimer with linear and cubic coupling. The dimer also represents a Hamiltonian system and is found to be exactly solvable in elementary functions. We show that the nonlinearity softens the PT-symmetry breaking transition in the nonlinearly-coupled dimer: stable periodic and quasiperiodic states with large enough amplitudes persist for an arbitrarily large value of the gain-loss coefficient.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8113/47/28/282001