The same frequency of planets inside and outside open clusters of stars
The transits of two Sun-like stars by small planets in an open star cluster are reported; such a stellar environment is unlike that of most planet-hosting field stars, and suggests that the occurrence of planets is unaffected by the stellar environment in open clusters. A global rate of planet forma...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-07, Vol.499 (7456), p.55-58 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transits of two Sun-like stars by small planets in an open star cluster are reported; such a stellar environment is unlike that of most planet-hosting field stars, and suggests that the occurrence of planets is unaffected by the stellar environment in open clusters.
A global rate of planet formation
Until now only four planets — with masses similar to Jupiter — have been found orbiting stars in old open clusters, compared with more than 800 — mostly Neptune-sized — orbiting 'field stars' outside clusters. Most stars and planets form in open clusters that break up within a few hundred million years as stars drift away to become field stars. Older open clusters survive because they were denser in stars when they formed, a stellar environment very different from that of other planet-hosting field stars. This paper, part of the Kepler Cluster Study, describes observations of the transits of two Sun-like stars by planets smaller than Neptune in the 1-billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in our Galaxy.
Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years
1
. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field
2
. The field planets are usually the size of Neptune or smaller
3
,
4
,
5
. In contrast, only four planets have been found orbiting stars in open clusters
6
,
7
,
8
, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature12279 |