Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation

This paper describes the evaluation of four types of porous ceramics for use as thermal transpiration materials in Knudsen pumps that operate at atmospheric pressure. Knudsen pumps are motionless gas pumps that utilize thermal transpiration along a channel or a set of channels; the channels must hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2011-09, Vol.21 (9), p.095029-14
Hauptverfasser: Gupta, Naveen K, Gianchandani, Yogesh B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 9
container_start_page 095029
container_title Journal of micromechanics and microengineering
container_volume 21
creator Gupta, Naveen K
Gianchandani, Yogesh B
description This paper describes the evaluation of four types of porous ceramics for use as thermal transpiration materials in Knudsen pumps that operate at atmospheric pressure. Knudsen pumps are motionless gas pumps that utilize thermal transpiration along a channel or a set of channels; the channels must have a temperature gradient and must constrain the flow to remain within the free molecular or transitional flow regimes. Of the ceramics evaluated, a clay-based, 15 bar synthetic ceramic (15PC) presents the most favorable properties for Knudsen pumps. For an input power of 3.4 W, a 25 x 25 mm super(2) nine-stage Knudsen pump that uses this material provides a maximum pressure head of 12 kPa and a maximum gas flow rate of [asymptotically =] 3.7 mu L min super(-1). Reliability tests demonstrate more than 11 750 h of continuous operation without any deterioration in their gas pumping capabilities. A fitted model suggests that the temporal evolution of pressure at the sealed outlet of a Knudsen pump can be captured adequately using four parameters. These parameters correspond to various nonidealities that play dominant roles in the transient response of these pumps.
doi_str_mv 10.1088/0960-1317/21/9/095029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669897171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669897171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-95a78717af8bb4002a101e5380ef4e27e65e7836098a2aced5b40781e8cf26723</originalsourceid><addsrcrecordid>eNp9kMuKFEEQRRNRsG39BCE3A7OwpjOyKl9LaXwM06ALXScxWVFjDfUys2rQnR_hF_olZlNNb0ZcBUGciLj3MvYaxBUIa3fCaVFACWYnYedyq4R0T9gGSg2Frkr3lG3OzHP2IqV7IQAs2A3Dz2Mcl8QDRezbkHgzRt4v3dymGe-I3wxLnWjgeRbHaemn9OfX736sqWuHO47TFEcM3zgONacfE8W2p2HGjtMDdgvO7Ti8ZM8a7BK9OtUt-_r-3Zf9x-Lw6cP1_u2hCEqYuXAKjTVgsLG3t5UQEkEAqdIKaiqShrQiY0stnEWJgWqVKWOBbGikNrLcssv1bpb0faE0-75NgboOB8oOPWjtrMsfIKNqRbOnlCI1fsrCMf70IPwxUn-Myx_j8hK882ukee_i9AJTwK6JOIQ2nZdlpUCCUZl7s3LtOJ2n_zzpp7rJuHiM_1_JX3uflIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669897171</pqid></control><display><type>article</type><title>Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gupta, Naveen K ; Gianchandani, Yogesh B</creator><creatorcontrib>Gupta, Naveen K ; Gianchandani, Yogesh B</creatorcontrib><description>This paper describes the evaluation of four types of porous ceramics for use as thermal transpiration materials in Knudsen pumps that operate at atmospheric pressure. Knudsen pumps are motionless gas pumps that utilize thermal transpiration along a channel or a set of channels; the channels must have a temperature gradient and must constrain the flow to remain within the free molecular or transitional flow regimes. Of the ceramics evaluated, a clay-based, 15 bar synthetic ceramic (15PC) presents the most favorable properties for Knudsen pumps. For an input power of 3.4 W, a 25 x 25 mm super(2) nine-stage Knudsen pump that uses this material provides a maximum pressure head of 12 kPa and a maximum gas flow rate of [asymptotically =] 3.7 mu L min super(-1). Reliability tests demonstrate more than 11 750 h of continuous operation without any deterioration in their gas pumping capabilities. A fitted model suggests that the temporal evolution of pressure at the sealed outlet of a Knudsen pump can be captured adequately using four parameters. These parameters correspond to various nonidealities that play dominant roles in the transient response of these pumps.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/0960-1317/21/9/095029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Applied sciences ; Asymptotic properties ; Atmospheric pressure ; Ceramics ; Channels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mathematical models ; Mechanical engineering. Machine design ; Physics ; Precision engineering, watch making ; Pumps ; Rarefied gas dynamics ; Temperature gradient ; Transpiration ; Vacuum apparatus and techniques ; Vacuum pumps</subject><ispartof>Journal of micromechanics and microengineering, 2011-09, Vol.21 (9), p.095029-14</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-95a78717af8bb4002a101e5380ef4e27e65e7836098a2aced5b40781e8cf26723</citedby><cites>FETCH-LOGICAL-c507t-95a78717af8bb4002a101e5380ef4e27e65e7836098a2aced5b40781e8cf26723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0960-1317/21/9/095029/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24512175$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Naveen K</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B</creatorcontrib><title>Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation</title><title>Journal of micromechanics and microengineering</title><description>This paper describes the evaluation of four types of porous ceramics for use as thermal transpiration materials in Knudsen pumps that operate at atmospheric pressure. Knudsen pumps are motionless gas pumps that utilize thermal transpiration along a channel or a set of channels; the channels must have a temperature gradient and must constrain the flow to remain within the free molecular or transitional flow regimes. Of the ceramics evaluated, a clay-based, 15 bar synthetic ceramic (15PC) presents the most favorable properties for Knudsen pumps. For an input power of 3.4 W, a 25 x 25 mm super(2) nine-stage Knudsen pump that uses this material provides a maximum pressure head of 12 kPa and a maximum gas flow rate of [asymptotically =] 3.7 mu L min super(-1). Reliability tests demonstrate more than 11 750 h of continuous operation without any deterioration in their gas pumping capabilities. A fitted model suggests that the temporal evolution of pressure at the sealed outlet of a Knudsen pump can be captured adequately using four parameters. These parameters correspond to various nonidealities that play dominant roles in the transient response of these pumps.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Atmospheric pressure</subject><subject>Ceramics</subject><subject>Channels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Pumps</subject><subject>Rarefied gas dynamics</subject><subject>Temperature gradient</subject><subject>Transpiration</subject><subject>Vacuum apparatus and techniques</subject><subject>Vacuum pumps</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMuKFEEQRRNRsG39BCE3A7OwpjOyKl9LaXwM06ALXScxWVFjDfUys2rQnR_hF_olZlNNb0ZcBUGciLj3MvYaxBUIa3fCaVFACWYnYedyq4R0T9gGSg2Frkr3lG3OzHP2IqV7IQAs2A3Dz2Mcl8QDRezbkHgzRt4v3dymGe-I3wxLnWjgeRbHaemn9OfX736sqWuHO47TFEcM3zgONacfE8W2p2HGjtMDdgvO7Ti8ZM8a7BK9OtUt-_r-3Zf9x-Lw6cP1_u2hCEqYuXAKjTVgsLG3t5UQEkEAqdIKaiqShrQiY0stnEWJgWqVKWOBbGikNrLcssv1bpb0faE0-75NgboOB8oOPWjtrMsfIKNqRbOnlCI1fsrCMf70IPwxUn-Myx_j8hK882ukee_i9AJTwK6JOIQ2nZdlpUCCUZl7s3LtOJ2n_zzpp7rJuHiM_1_JX3uflIY</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Gupta, Naveen K</creator><creator>Gianchandani, Yogesh B</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110901</creationdate><title>Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation</title><author>Gupta, Naveen K ; Gianchandani, Yogesh B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-95a78717af8bb4002a101e5380ef4e27e65e7836098a2aced5b40781e8cf26723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Atmospheric pressure</topic><topic>Ceramics</topic><topic>Channels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Pumps</topic><topic>Rarefied gas dynamics</topic><topic>Temperature gradient</topic><topic>Transpiration</topic><topic>Vacuum apparatus and techniques</topic><topic>Vacuum pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Naveen K</creatorcontrib><creatorcontrib>Gianchandani, Yogesh B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Naveen K</au><au>Gianchandani, Yogesh B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>21</volume><issue>9</issue><spage>095029</spage><epage>14</epage><pages>095029-14</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><abstract>This paper describes the evaluation of four types of porous ceramics for use as thermal transpiration materials in Knudsen pumps that operate at atmospheric pressure. Knudsen pumps are motionless gas pumps that utilize thermal transpiration along a channel or a set of channels; the channels must have a temperature gradient and must constrain the flow to remain within the free molecular or transitional flow regimes. Of the ceramics evaluated, a clay-based, 15 bar synthetic ceramic (15PC) presents the most favorable properties for Knudsen pumps. For an input power of 3.4 W, a 25 x 25 mm super(2) nine-stage Knudsen pump that uses this material provides a maximum pressure head of 12 kPa and a maximum gas flow rate of [asymptotically =] 3.7 mu L min super(-1). Reliability tests demonstrate more than 11 750 h of continuous operation without any deterioration in their gas pumping capabilities. A fitted model suggests that the temporal evolution of pressure at the sealed outlet of a Knudsen pump can be captured adequately using four parameters. These parameters correspond to various nonidealities that play dominant roles in the transient response of these pumps.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0960-1317/21/9/095029</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2011-09, Vol.21 (9), p.095029-14
issn 0960-1317
1361-6439
language eng
recordid cdi_proquest_miscellaneous_1669897171
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Applied sciences
Asymptotic properties
Atmospheric pressure
Ceramics
Channels
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mathematical models
Mechanical engineering. Machine design
Physics
Precision engineering, watch making
Pumps
Rarefied gas dynamics
Temperature gradient
Transpiration
Vacuum apparatus and techniques
Vacuum pumps
title Porous ceramics for multistage Knudsen micropumps—modeling approach and experimental evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T14%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20ceramics%20for%20multistage%20Knudsen%20micropumps%E2%80%94modeling%20approach%20and%20experimental%20evaluation&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Gupta,%20Naveen%20K&rft.date=2011-09-01&rft.volume=21&rft.issue=9&rft.spage=095029&rft.epage=14&rft.pages=095029-14&rft.issn=0960-1317&rft.eissn=1361-6439&rft_id=info:doi/10.1088/0960-1317/21/9/095029&rft_dat=%3Cproquest_cross%3E1669897171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669897171&rft_id=info:pmid/&rfr_iscdi=true