Improved Linearization of the Optimal Compression Function for Laplacian Source

In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical Engineering 2014-05, Vol.65 (3), p.179-183
Hauptverfasser: Peric, Zoran H, Z, Lazar Velimirovic, Dincic, Milan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 179
container_title Journal of Electrical Engineering
container_volume 65
creator Peric, Zoran H
Z, Lazar Velimirovic
Dincic, Milan R
description In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.
doi_str_mv 10.2478/jee-2014-0028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669893586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669893586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a9a2143b4f924c5a834ca36ab6b3aafb24c5750d7a60e1b4f9c862a55de559703</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOOaO3gtevFSTpkkbPMlwOijsoIK38Jq-akfXzKRV5l9v6jwM8ZRH3vcev_cRcs7oVZJm-fUaMU4oS2NKk_yITBjnKuZUvRwf1Kdk5v2a0sCpJKVyQlbLzdbZD6yioukQXPMFfWO7yNZR_4bRats3G2ijuQ0Yej-2FkNnfpjauqiAbQumgS56tIMzeEZOamg9zn7fKXle3D3NH-Jidb-c3xax4anoY1CQsJSXaR1yGAE5Tw1wCaUsOUBdjp-ZoFUGkiIbMZPLBISoUAiVUT4ll_u9If37gL7Xm8YbbFvo0A5eMylVrrjIZUAv_qDrELUL6TQTKUuCCDZS8Z4yznrvsNZbF053O82oHg3rYFiPhvVoOPA3e_4T2h5dha9u2IXiYPl_c1Jwlin-DcPigXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541224016</pqid></control><display><type>article</type><title>Improved Linearization of the Optimal Compression Function for Laplacian Source</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Walter De Gruyter: Open Access Journals</source><creator>Peric, Zoran H ; Z, Lazar Velimirovic ; Dincic, Milan R</creator><creatorcontrib>Peric, Zoran H ; Z, Lazar Velimirovic ; Dincic, Milan R</creatorcontrib><description>In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.</description><identifier>ISSN: 1339-309X</identifier><identifier>ISSN: 1335-3632</identifier><identifier>EISSN: 1339-309X</identifier><identifier>DOI: 10.2478/jee-2014-0028</identifier><language>eng</language><publisher>Bratislava: De Gruyter Open</publisher><subject>Coding ; Compressing ; Counters ; Distortion ; Linearization ; Mathematical models ; optimal compression function ; Optimization ; scalar compandor ; Scalars</subject><ispartof>Journal of Electrical Engineering, 2014-05, Vol.65 (3), p.179-183</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2478/jee-2014-0028/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.2478/jee-2014-0028/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,66901,68685</link.rule.ids></links><search><creatorcontrib>Peric, Zoran H</creatorcontrib><creatorcontrib>Z, Lazar Velimirovic</creatorcontrib><creatorcontrib>Dincic, Milan R</creatorcontrib><title>Improved Linearization of the Optimal Compression Function for Laplacian Source</title><title>Journal of Electrical Engineering</title><description>In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.</description><subject>Coding</subject><subject>Compressing</subject><subject>Counters</subject><subject>Distortion</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>optimal compression function</subject><subject>Optimization</subject><subject>scalar compandor</subject><subject>Scalars</subject><issn>1339-309X</issn><issn>1335-3632</issn><issn>1339-309X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkMFLwzAUh4MoOOaO3gtevFSTpkkbPMlwOijsoIK38Jq-akfXzKRV5l9v6jwM8ZRH3vcev_cRcs7oVZJm-fUaMU4oS2NKk_yITBjnKuZUvRwf1Kdk5v2a0sCpJKVyQlbLzdbZD6yioukQXPMFfWO7yNZR_4bRats3G2ijuQ0Yej-2FkNnfpjauqiAbQumgS56tIMzeEZOamg9zn7fKXle3D3NH-Jidb-c3xax4anoY1CQsJSXaR1yGAE5Tw1wCaUsOUBdjp-ZoFUGkiIbMZPLBISoUAiVUT4ll_u9If37gL7Xm8YbbFvo0A5eMylVrrjIZUAv_qDrELUL6TQTKUuCCDZS8Z4yznrvsNZbF053O82oHg3rYFiPhvVoOPA3e_4T2h5dha9u2IXiYPl_c1Jwlin-DcPigXc</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Peric, Zoran H</creator><creator>Z, Lazar Velimirovic</creator><creator>Dincic, Milan R</creator><general>De Gruyter Open</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>Improved Linearization of the Optimal Compression Function for Laplacian Source</title><author>Peric, Zoran H ; Z, Lazar Velimirovic ; Dincic, Milan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a9a2143b4f924c5a834ca36ab6b3aafb24c5750d7a60e1b4f9c862a55de559703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Coding</topic><topic>Compressing</topic><topic>Counters</topic><topic>Distortion</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>optimal compression function</topic><topic>Optimization</topic><topic>scalar compandor</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peric, Zoran H</creatorcontrib><creatorcontrib>Z, Lazar Velimirovic</creatorcontrib><creatorcontrib>Dincic, Milan R</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Electrical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peric, Zoran H</au><au>Z, Lazar Velimirovic</au><au>Dincic, Milan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Linearization of the Optimal Compression Function for Laplacian Source</atitle><jtitle>Journal of Electrical Engineering</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>65</volume><issue>3</issue><spage>179</spage><epage>183</epage><pages>179-183</pages><issn>1339-309X</issn><issn>1335-3632</issn><eissn>1339-309X</eissn><abstract>In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.</abstract><cop>Bratislava</cop><pub>De Gruyter Open</pub><doi>10.2478/jee-2014-0028</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1339-309X
ispartof Journal of Electrical Engineering, 2014-05, Vol.65 (3), p.179-183
issn 1339-309X
1335-3632
1339-309X
language eng
recordid cdi_proquest_miscellaneous_1669893586
source EZB-FREE-00999 freely available EZB journals; Walter De Gruyter: Open Access Journals
subjects Coding
Compressing
Counters
Distortion
Linearization
Mathematical models
optimal compression function
Optimization
scalar compandor
Scalars
title Improved Linearization of the Optimal Compression Function for Laplacian Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Linearization%20of%20the%20Optimal%20Compression%20Function%20for%20Laplacian%20Source&rft.jtitle=Journal%20of%20Electrical%20Engineering&rft.au=Peric,%20Zoran%20H&rft.date=2014-05-01&rft.volume=65&rft.issue=3&rft.spage=179&rft.epage=183&rft.pages=179-183&rft.issn=1339-309X&rft.eissn=1339-309X&rft_id=info:doi/10.2478/jee-2014-0028&rft_dat=%3Cproquest_cross%3E1669893586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541224016&rft_id=info:pmid/&rfr_iscdi=true