Improved Linearization of the Optimal Compression Function for Laplacian Source

In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical Engineering 2014-05, Vol.65 (3), p.179-183
Hauptverfasser: Peric, Zoran H, Z, Lazar Velimirovic, Dincic, Milan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.
ISSN:1339-309X
1335-3632
1339-309X
DOI:10.2478/jee-2014-0028