Operational Adequacy Studies of a PV-Based and Energy Storage Stand-Alone Microgrid

This paper presents a probabilistic approach in the modeling of stand-alone microgrids to predict their operational adequacy performance considering uncertainty of energy storage system (ESS), photovoltaic system (PVS) and conventional generator (CG). Instead of using the daily or hourly time step,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2015-03, Vol.30 (2), p.892-900
Hauptverfasser: Koh, L. H., Peng Wang, Fook Hoong Choo, King-Jet Tseng, ZhiYong Gao, Puttgen, Hans B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a probabilistic approach in the modeling of stand-alone microgrids to predict their operational adequacy performance considering uncertainty of energy storage system (ESS), photovoltaic system (PVS) and conventional generator (CG). Instead of using the daily or hourly time step, operating period a minutely time step is considered to incorporate the effect of fast ramp up/down of system components on microgrid operating adequacy through expected energy not supplied (EENS) and expected energy not used (EENU), due to load and resource variations. A time varying state of charge (SOC) model is proposed to determine power output of an ESS in reliability modeling. The reliability of a PVS is modeled in detail based on the total cross-tied configuration (TCTC) of photovoltaic (PV) cells and arrays. The proposed technique and indices will be useful for system planners to select the type and size of microgrid systems that contain alternative energy sources and storage.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2014.2334603