Morse Families In Optimal Control Problems

We geometrically describe optimal control problems in terms of Morse families in the Hamiltonian framework. These geometric structures allow us to recover the classical first order necessary conditions for optimality and the starting point to run an integrability algorithm. Moreover the integrabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2015-01, Vol.53 (1), p.414-433
Hauptverfasser: Barbero-Lin͂án, María, Ponte, David Iglesias, MartÍn de Diego, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We geometrically describe optimal control problems in terms of Morse families in the Hamiltonian framework. These geometric structures allow us to recover the classical first order necessary conditions for optimality and the starting point to run an integrability algorithm. Moreover the integrability algorithm is adapted to optimal control problems in such a way that the trajectories originated by discontinuous controls are also obtained. From the Hamiltonian viewpoint we obtain the equations of motion for optimal control problems in the Lagrangian formalism by means of a proper Lagrangian submanifold. Singular optimal control problems and overdetermined ones are also studied in the paper.
ISSN:0363-0129
1095-7138
DOI:10.1137/120903488