An adhesive contact problem for an incompressible non-homogeneous elastic halfspace

In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2015-02, Vol.226 (2), p.249-265
Hauptverfasser: Selvadurai, A. P. S., Katebi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 249
container_title Acta mechanica
container_volume 226
creator Selvadurai, A. P. S.
Katebi, A.
description In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.
doi_str_mv 10.1007/s00707-014-1171-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669885032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A408649256</galeid><sourcerecordid>A408649256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</originalsourceid><addsrcrecordid>eNp1kUGLFDEQhYO44Li7P2BvAS9esqY66U5yHBZdhQUP6jmk05WZLN3JmPQI_nsztgcRpCBFFd8rHnmE3AG_B87Vu9oerhgHyQAUMP2C7GAAwwYj1Euy45wD643ir8jrWp_b1CkJO_Jln6ibjljjD6Q-p9X5lZ5KHmdcaMiFukRj8nk5Faw1tjVNObFjXvIBE-ZzpTi7ukZPj24O9eQ83pCr4OaKt3_6Nfn24f3Xh4_s6fPjp4f9E_NSq5X1nst-dBrG4IUZpZJCT9LzQXVjCDAMk1LGjGEKk-tgEkGPwakehBAaO6PFNXm73W1-v5-xrnaJ1eM8u9_GbDthtO656Br65h_0OZ9Lau4a1XcwCCn7Rt1v1MHNaGMKeS3Ot5pwie1zMMS230uuB2m6fmgC2AS-5FoLBnsqcXHlpwVuL7nYLRfbcrGXXOzFdbdpamPTActfVv4r-gWjGI-2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652163445</pqid></control><display><type>article</type><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><source>SpringerLink Journals - AutoHoldings</source><creator>Selvadurai, A. P. S. ; Katebi, A.</creator><creatorcontrib>Selvadurai, A. P. S. ; Katebi, A.</creatorcontrib><description>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-014-1171-8</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Adhesion ; Adhesives ; Algebra ; Axisymmetric ; Boundary value problems ; Classical and Continuum Physics ; Contact ; Contact stresses ; Control ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Equivalence ; Heat and Mass Transfer ; Indenters ; Mathematical analysis ; Mechanics ; Modulus of elasticity ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2015-02, Vol.226 (2), p.249-265</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</citedby><cites>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-014-1171-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-014-1171-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Selvadurai, A. P. S.</creatorcontrib><creatorcontrib>Katebi, A.</creatorcontrib><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Algebra</subject><subject>Axisymmetric</subject><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Contact</subject><subject>Contact stresses</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Equivalence</subject><subject>Heat and Mass Transfer</subject><subject>Indenters</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Modulus of elasticity</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUGLFDEQhYO44Li7P2BvAS9esqY66U5yHBZdhQUP6jmk05WZLN3JmPQI_nsztgcRpCBFFd8rHnmE3AG_B87Vu9oerhgHyQAUMP2C7GAAwwYj1Euy45wD643ir8jrWp_b1CkJO_Jln6ibjljjD6Q-p9X5lZ5KHmdcaMiFukRj8nk5Faw1tjVNObFjXvIBE-ZzpTi7ukZPj24O9eQ83pCr4OaKt3_6Nfn24f3Xh4_s6fPjp4f9E_NSq5X1nst-dBrG4IUZpZJCT9LzQXVjCDAMk1LGjGEKk-tgEkGPwakehBAaO6PFNXm73W1-v5-xrnaJ1eM8u9_GbDthtO656Br65h_0OZ9Lau4a1XcwCCn7Rt1v1MHNaGMKeS3Ot5pwie1zMMS230uuB2m6fmgC2AS-5FoLBnsqcXHlpwVuL7nYLRfbcrGXXOzFdbdpamPTActfVv4r-gWjGI-2</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Selvadurai, A. P. S.</creator><creator>Katebi, A.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150201</creationdate><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><author>Selvadurai, A. P. S. ; Katebi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Algebra</topic><topic>Axisymmetric</topic><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Contact</topic><topic>Contact stresses</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Equivalence</topic><topic>Heat and Mass Transfer</topic><topic>Indenters</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Modulus of elasticity</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvadurai, A. P. S.</creatorcontrib><creatorcontrib>Katebi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvadurai, A. P. S.</au><au>Katebi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>226</volume><issue>2</issue><spage>249</spage><epage>265</epage><pages>249-265</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-014-1171-8</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2015-02, Vol.226 (2), p.249-265
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_1669885032
source SpringerLink Journals - AutoHoldings
subjects Adhesion
Adhesives
Algebra
Axisymmetric
Boundary value problems
Classical and Continuum Physics
Contact
Contact stresses
Control
Dynamical Systems
Engineering
Engineering Thermodynamics
Equivalence
Heat and Mass Transfer
Indenters
Mathematical analysis
Mechanics
Modulus of elasticity
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title An adhesive contact problem for an incompressible non-homogeneous elastic halfspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adhesive%20contact%20problem%20for%20an%20incompressible%20non-homogeneous%20elastic%20halfspace&rft.jtitle=Acta%20mechanica&rft.au=Selvadurai,%20A.%20P.%20S.&rft.date=2015-02-01&rft.volume=226&rft.issue=2&rft.spage=249&rft.epage=265&rft.pages=249-265&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-014-1171-8&rft_dat=%3Cgale_proqu%3EA408649256%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652163445&rft_id=info:pmid/&rft_galeid=A408649256&rfr_iscdi=true