An adhesive contact problem for an incompressible non-homogeneous elastic halfspace
In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2015-02, Vol.226 (2), p.249-265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 2 |
container_start_page | 249 |
container_title | Acta mechanica |
container_volume | 226 |
creator | Selvadurai, A. P. S. Katebi, A. |
description | In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium. |
doi_str_mv | 10.1007/s00707-014-1171-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669885032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A408649256</galeid><sourcerecordid>A408649256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</originalsourceid><addsrcrecordid>eNp1kUGLFDEQhYO44Li7P2BvAS9esqY66U5yHBZdhQUP6jmk05WZLN3JmPQI_nsztgcRpCBFFd8rHnmE3AG_B87Vu9oerhgHyQAUMP2C7GAAwwYj1Euy45wD643ir8jrWp_b1CkJO_Jln6ibjljjD6Q-p9X5lZ5KHmdcaMiFukRj8nk5Faw1tjVNObFjXvIBE-ZzpTi7ukZPj24O9eQ83pCr4OaKt3_6Nfn24f3Xh4_s6fPjp4f9E_NSq5X1nst-dBrG4IUZpZJCT9LzQXVjCDAMk1LGjGEKk-tgEkGPwakehBAaO6PFNXm73W1-v5-xrnaJ1eM8u9_GbDthtO656Br65h_0OZ9Lau4a1XcwCCn7Rt1v1MHNaGMKeS3Ot5pwie1zMMS230uuB2m6fmgC2AS-5FoLBnsqcXHlpwVuL7nYLRfbcrGXXOzFdbdpamPTActfVv4r-gWjGI-2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652163445</pqid></control><display><type>article</type><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><source>SpringerLink Journals - AutoHoldings</source><creator>Selvadurai, A. P. S. ; Katebi, A.</creator><creatorcontrib>Selvadurai, A. P. S. ; Katebi, A.</creatorcontrib><description>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-014-1171-8</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Adhesion ; Adhesives ; Algebra ; Axisymmetric ; Boundary value problems ; Classical and Continuum Physics ; Contact ; Contact stresses ; Control ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Equivalence ; Heat and Mass Transfer ; Indenters ; Mathematical analysis ; Mechanics ; Modulus of elasticity ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2015-02, Vol.226 (2), p.249-265</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</citedby><cites>FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-014-1171-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-014-1171-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Selvadurai, A. P. S.</creatorcontrib><creatorcontrib>Katebi, A.</creatorcontrib><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Algebra</subject><subject>Axisymmetric</subject><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Contact</subject><subject>Contact stresses</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Equivalence</subject><subject>Heat and Mass Transfer</subject><subject>Indenters</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Modulus of elasticity</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUGLFDEQhYO44Li7P2BvAS9esqY66U5yHBZdhQUP6jmk05WZLN3JmPQI_nsztgcRpCBFFd8rHnmE3AG_B87Vu9oerhgHyQAUMP2C7GAAwwYj1Euy45wD643ir8jrWp_b1CkJO_Jln6ibjljjD6Q-p9X5lZ5KHmdcaMiFukRj8nk5Faw1tjVNObFjXvIBE-ZzpTi7ukZPj24O9eQ83pCr4OaKt3_6Nfn24f3Xh4_s6fPjp4f9E_NSq5X1nst-dBrG4IUZpZJCT9LzQXVjCDAMk1LGjGEKk-tgEkGPwakehBAaO6PFNXm73W1-v5-xrnaJ1eM8u9_GbDthtO656Br65h_0OZ9Lau4a1XcwCCn7Rt1v1MHNaGMKeS3Ot5pwie1zMMS230uuB2m6fmgC2AS-5FoLBnsqcXHlpwVuL7nYLRfbcrGXXOzFdbdpamPTActfVv4r-gWjGI-2</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Selvadurai, A. P. S.</creator><creator>Katebi, A.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150201</creationdate><title>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</title><author>Selvadurai, A. P. S. ; Katebi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5c045ba81bfc39b47438d4c0672bff166d7799bfdfda21d3f8bfa7513338e2983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Algebra</topic><topic>Axisymmetric</topic><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Contact</topic><topic>Contact stresses</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Equivalence</topic><topic>Heat and Mass Transfer</topic><topic>Indenters</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Modulus of elasticity</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvadurai, A. P. S.</creatorcontrib><creatorcontrib>Katebi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvadurai, A. P. S.</au><au>Katebi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adhesive contact problem for an incompressible non-homogeneous elastic halfspace</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>226</volume><issue>2</issue><spage>249</spage><epage>265</epage><pages>249-265</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-014-1171-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2015-02, Vol.226 (2), p.249-265 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669885032 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesion Adhesives Algebra Axisymmetric Boundary value problems Classical and Continuum Physics Contact Contact stresses Control Dynamical Systems Engineering Engineering Thermodynamics Equivalence Heat and Mass Transfer Indenters Mathematical analysis Mechanics Modulus of elasticity Solid Mechanics Theoretical and Applied Mechanics Vibration |
title | An adhesive contact problem for an incompressible non-homogeneous elastic halfspace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adhesive%20contact%20problem%20for%20an%20incompressible%20non-homogeneous%20elastic%20halfspace&rft.jtitle=Acta%20mechanica&rft.au=Selvadurai,%20A.%20P.%20S.&rft.date=2015-02-01&rft.volume=226&rft.issue=2&rft.spage=249&rft.epage=265&rft.pages=249-265&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-014-1171-8&rft_dat=%3Cgale_proqu%3EA408649256%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652163445&rft_id=info:pmid/&rft_galeid=A408649256&rfr_iscdi=true |