An adhesive contact problem for an incompressible non-homogeneous elastic halfspace
In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2015-02, Vol.226 (2), p.249-265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we examine the axisymmetric adhesive contact problem for a rigid circular plate and an incompressible elastic halfspace where the linear elastic shear modulus varies exponentially with depth. The analytical solution of the mixed boundary value problem entails a set of coupled integral equations that cannot be solved easily by conventional integral transform techniques proposed in the literature. In this paper, we adopt a computational scheme where the contact normal and contact shear stress distributions are approximated by their discretized equivalents. The consideration of compatibility of deformations due to the indentation by a rigid indenter in adhesive contact gives a set of algebraic equations that yield the discretized equivalents of the contacts stresses and the axial stiffness of the medium. |
---|---|
ISSN: | 0001-5970 1619-6937 |
DOI: | 10.1007/s00707-014-1171-8 |