Approximation algorithms for maximum independent set of a unit disk graph

We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2015-03, Vol.115 (3), p.439-446
Hauptverfasser: Das, Gautam K., De, Minati, Kolay, Sudeshna, Nandy, Subhas C., Sur-Kolay, Susmita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 3
container_start_page 439
container_title Information processing letters
container_volume 115
creator Das, Gautam K.
De, Minati
Kolay, Sudeshna
Nandy, Subhas C.
Sur-Kolay, Susmita
description We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum independent set problem for a unit disk graph. Given an integer k>1, it produces a solution of size 1(1+1k)2|OPT| in O(k4nσklog⁡k+nlog⁡n) time and O(n+klog⁡k) space, where OPT is the subset of disks in an optimal solution and σk≤7k3+2. For a penny graph, the proposed PTAS produces a solution of size 1(1+1k)|OPT| in O(22σknk+nlog⁡n) time using O(2σk+n) space. •A 2-factor approximation for computing the maximum independent set of unit disk graph is proposed. It runs in O(n3) time and O(n2) space.•A similar technique works for penny graph in O(nlog⁡n) time and produces a 2-approximation result.•Efficient PTAS are proposed for computing the maximum independent set of unit disk graph and penny graph.
doi_str_mv 10.1016/j.ipl.2014.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669883861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002001901400235X</els_id><sourcerecordid>3527791781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-edebd324e789f991b1e663f24eddccff898fa41ab5ad38d8e3e8dfd896d13b543</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gssbAk-OLUdcRUVXxUqsQCs-XG59YliYOdIPj3uCoTA4tPunte6-4h5BpYDgzE3T53fZMXDMocIGesOCETkPMiEwDVKZmkDssYVOycXMS4Z4yJks8nZLXo--C_XKsH5zuqm60Pbti1kVofaKvTZGyp6wz2mJ5uoBEH6i3VdOzcQI2L73QbdL-7JGdWNxGvfuuUvD0-vC6fs_XL02q5WGc1n8khQ4Mbw4sS57KyVQUbQCG4TQ1j6tpaWUmrS9CbmTZcGokcpbFGVsIA38xKPiW3x3_T3h8jxkG1LtbYNLpDP0YFQlRScikgoTd_0L0fQ5e2SxQXpZRM8ETBkaqDjzGgVX1IPsK3AqYOctVeJbnqIFcBqKQyZe6PGUyXfjoMKtYOuxqNC1gPynj3T_oH7KuCwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636488063</pqid></control><display><type>article</type><title>Approximation algorithms for maximum independent set of a unit disk graph</title><source>Access via ScienceDirect (Elsevier)</source><creator>Das, Gautam K. ; De, Minati ; Kolay, Sudeshna ; Nandy, Subhas C. ; Sur-Kolay, Susmita</creator><creatorcontrib>Das, Gautam K. ; De, Minati ; Kolay, Sudeshna ; Nandy, Subhas C. ; Sur-Kolay, Susmita</creatorcontrib><description>We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum independent set problem for a unit disk graph. Given an integer k&gt;1, it produces a solution of size 1(1+1k)2|OPT| in O(k4nσklog⁡k+nlog⁡n) time and O(n+klog⁡k) space, where OPT is the subset of disks in an optimal solution and σk≤7k3+2. For a penny graph, the proposed PTAS produces a solution of size 1(1+1k)|OPT| in O(22σknk+nlog⁡n) time using O(2σk+n) space. •A 2-factor approximation for computing the maximum independent set of unit disk graph is proposed. It runs in O(n3) time and O(n2) space.•A similar technique works for penny graph in O(nlog⁡n) time and produces a 2-approximation result.•Efficient PTAS are proposed for computing the maximum independent set of unit disk graph and penny graph.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2014.11.002</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Complexity ; Computational geometry ; Computer science ; Data processing ; Disks ; Graph algorithms ; Graphs ; Integer programming ; Integers ; Mathematical analysis ; Mathematical problems ; Maximum independent set ; Optimization ; Optimization algorithms ; PTAS ; Studies ; Theorems ; Unit disk graph</subject><ispartof>Information processing letters, 2015-03, Vol.115 (3), p.439-446</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-edebd324e789f991b1e663f24eddccff898fa41ab5ad38d8e3e8dfd896d13b543</citedby><cites>FETCH-LOGICAL-c358t-edebd324e789f991b1e663f24eddccff898fa41ab5ad38d8e3e8dfd896d13b543</cites><orcidid>0000-0002-1859-8800 ; 0000-0003-0330-2891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2014.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Das, Gautam K.</creatorcontrib><creatorcontrib>De, Minati</creatorcontrib><creatorcontrib>Kolay, Sudeshna</creatorcontrib><creatorcontrib>Nandy, Subhas C.</creatorcontrib><creatorcontrib>Sur-Kolay, Susmita</creatorcontrib><title>Approximation algorithms for maximum independent set of a unit disk graph</title><title>Information processing letters</title><description>We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum independent set problem for a unit disk graph. Given an integer k&gt;1, it produces a solution of size 1(1+1k)2|OPT| in O(k4nσklog⁡k+nlog⁡n) time and O(n+klog⁡k) space, where OPT is the subset of disks in an optimal solution and σk≤7k3+2. For a penny graph, the proposed PTAS produces a solution of size 1(1+1k)|OPT| in O(22σknk+nlog⁡n) time using O(2σk+n) space. •A 2-factor approximation for computing the maximum independent set of unit disk graph is proposed. It runs in O(n3) time and O(n2) space.•A similar technique works for penny graph in O(nlog⁡n) time and produces a 2-approximation result.•Efficient PTAS are proposed for computing the maximum independent set of unit disk graph and penny graph.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Complexity</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Data processing</subject><subject>Disks</subject><subject>Graph algorithms</subject><subject>Graphs</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Maximum independent set</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>PTAS</subject><subject>Studies</subject><subject>Theorems</subject><subject>Unit disk graph</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gssbAk-OLUdcRUVXxUqsQCs-XG59YliYOdIPj3uCoTA4tPunte6-4h5BpYDgzE3T53fZMXDMocIGesOCETkPMiEwDVKZmkDssYVOycXMS4Z4yJks8nZLXo--C_XKsH5zuqm60Pbti1kVofaKvTZGyp6wz2mJ5uoBEH6i3VdOzcQI2L73QbdL-7JGdWNxGvfuuUvD0-vC6fs_XL02q5WGc1n8khQ4Mbw4sS57KyVQUbQCG4TQ1j6tpaWUmrS9CbmTZcGokcpbFGVsIA38xKPiW3x3_T3h8jxkG1LtbYNLpDP0YFQlRScikgoTd_0L0fQ5e2SxQXpZRM8ETBkaqDjzGgVX1IPsK3AqYOctVeJbnqIFcBqKQyZe6PGUyXfjoMKtYOuxqNC1gPynj3T_oH7KuCwA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Das, Gautam K.</creator><creator>De, Minati</creator><creator>Kolay, Sudeshna</creator><creator>Nandy, Subhas C.</creator><creator>Sur-Kolay, Susmita</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1859-8800</orcidid><orcidid>https://orcid.org/0000-0003-0330-2891</orcidid></search><sort><creationdate>20150301</creationdate><title>Approximation algorithms for maximum independent set of a unit disk graph</title><author>Das, Gautam K. ; De, Minati ; Kolay, Sudeshna ; Nandy, Subhas C. ; Sur-Kolay, Susmita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-edebd324e789f991b1e663f24eddccff898fa41ab5ad38d8e3e8dfd896d13b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Complexity</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Data processing</topic><topic>Disks</topic><topic>Graph algorithms</topic><topic>Graphs</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Maximum independent set</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>PTAS</topic><topic>Studies</topic><topic>Theorems</topic><topic>Unit disk graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Gautam K.</creatorcontrib><creatorcontrib>De, Minati</creatorcontrib><creatorcontrib>Kolay, Sudeshna</creatorcontrib><creatorcontrib>Nandy, Subhas C.</creatorcontrib><creatorcontrib>Sur-Kolay, Susmita</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Gautam K.</au><au>De, Minati</au><au>Kolay, Sudeshna</au><au>Nandy, Subhas C.</au><au>Sur-Kolay, Susmita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation algorithms for maximum independent set of a unit disk graph</atitle><jtitle>Information processing letters</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>115</volume><issue>3</issue><spage>439</spage><epage>446</epage><pages>439-446</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum independent set problem for a unit disk graph. Given an integer k&gt;1, it produces a solution of size 1(1+1k)2|OPT| in O(k4nσklog⁡k+nlog⁡n) time and O(n+klog⁡k) space, where OPT is the subset of disks in an optimal solution and σk≤7k3+2. For a penny graph, the proposed PTAS produces a solution of size 1(1+1k)|OPT| in O(22σknk+nlog⁡n) time using O(2σk+n) space. •A 2-factor approximation for computing the maximum independent set of unit disk graph is proposed. It runs in O(n3) time and O(n2) space.•A similar technique works for penny graph in O(nlog⁡n) time and produces a 2-approximation result.•Efficient PTAS are proposed for computing the maximum independent set of unit disk graph and penny graph.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2014.11.002</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1859-8800</orcidid><orcidid>https://orcid.org/0000-0003-0330-2891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2015-03, Vol.115 (3), p.439-446
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_1669883861
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Approximation
Approximation algorithms
Complexity
Computational geometry
Computer science
Data processing
Disks
Graph algorithms
Graphs
Integer programming
Integers
Mathematical analysis
Mathematical problems
Maximum independent set
Optimization
Optimization algorithms
PTAS
Studies
Theorems
Unit disk graph
title Approximation algorithms for maximum independent set of a unit disk graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20algorithms%20for%20maximum%20independent%20set%20of%20a%20unit%20disk%20graph&rft.jtitle=Information%20processing%20letters&rft.au=Das,%20Gautam%20K.&rft.date=2015-03-01&rft.volume=115&rft.issue=3&rft.spage=439&rft.epage=446&rft.pages=439-446&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2014.11.002&rft_dat=%3Cproquest_cross%3E3527791781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636488063&rft_id=info:pmid/&rft_els_id=S002001901400235X&rfr_iscdi=true