Approximation algorithms for maximum independent set of a unit disk graph

We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2015-03, Vol.115 (3), p.439-446
Hauptverfasser: Das, Gautam K., De, Minati, Kolay, Sudeshna, Nandy, Subhas C., Sur-Kolay, Susmita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a 2-approximation algorithm for the maximum independent set problem for a unit disk graph. The time and space complexities are O(n3) and O(n2), respectively. For a penny graph, our proposed 2-approximation algorithm works in O(nlog⁡n) time using O(n) space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum independent set problem for a unit disk graph. Given an integer k>1, it produces a solution of size 1(1+1k)2|OPT| in O(k4nσklog⁡k+nlog⁡n) time and O(n+klog⁡k) space, where OPT is the subset of disks in an optimal solution and σk≤7k3+2. For a penny graph, the proposed PTAS produces a solution of size 1(1+1k)|OPT| in O(22σknk+nlog⁡n) time using O(2σk+n) space. •A 2-factor approximation for computing the maximum independent set of unit disk graph is proposed. It runs in O(n3) time and O(n2) space.•A similar technique works for penny graph in O(nlog⁡n) time and produces a 2-approximation result.•Efficient PTAS are proposed for computing the maximum independent set of unit disk graph and penny graph.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2014.11.002