Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process

In this work, TiC reinforced steel composite layer has been produced by laser scanning over the preplaced TiC powder on AISI 304 steel substrate, using a pulse Nd:YAG laser. Depending on the pulse laser parameters, TiC either deposited or dispersed on the surface of steel substrate. Depth and width...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering 2015-04, Vol.67, p.36-48
Hauptverfasser: Sahoo, Chinmaya Kumar, Masanta, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, TiC reinforced steel composite layer has been produced by laser scanning over the preplaced TiC powder on AISI 304 steel substrate, using a pulse Nd:YAG laser. Depending on the pulse laser parameters, TiC either deposited or dispersed on the surface of steel substrate. Depth and width of laser processed TiC–steel composite layer has been deliberated from the SEM images at the transverse cross section of the laser scanned samples. Hardness of the laser processed composite layer has been measured through Vickers micro-hardness tester. Effect of pulsed laser parameters i.e. peak power, pulse duration, overlapping factor (corresponding to scan speed and frequency) on micro-hardness, composite layer profile (depth and width) and microstructure of the laser processed TiC–steel composite layer has been studied. From the experimental analysis, it is revealed that, laser peak power and overlapping factor have significant effect on the TiC–steel composite layer profile and its hardness value. •TiC–steel composite layer formed on AISI 304 steel by pulse Nd:YAG laser scanning.•Composite layer depth increases with increasing peak power and overlapping factor.•Uniformity of composite layer enhances at higher peak power and overlapping factor.•Higher pulse duration improves the TiC distribution and increases the composite layer depth.•Hardness of TiC–steel composite layer improves up to 1200HV0.05 depending on laser processing parameters.
ISSN:0143-8166
1873-0302
DOI:10.1016/j.optlaseng.2014.10.010