Design of a robust model predictive controller with reduced computational complexity

The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2014-11, Vol.53 (6), p.1754-1759
Hauptverfasser: Razi, M., Haeri, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1759
container_issue 6
container_start_page 1754
container_title ISA transactions
container_volume 53
creator Razi, M.
Haeri, M.
description The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.
doi_str_mv 10.1016/j.isatra.2014.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669881105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001905781400233X</els_id><sourcerecordid>1669881105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</originalsourceid><addsrcrecordid>eNqNkM1O3TAQRi3UCi4_b1BVWXaTMHZsx9lUqihQJCQ2dG3Zzrj1VRLf2g6Ut2_g0i4rVqOZOTOfdAj5QKGhQOX5tgnZlGQaBpQ30DcA6oBsqOr6mgFj78gGgPY1iE4dkeOctwDARK8OyRETnEMv2Ibcf8UcfsxV9JWpUrRLLtUUBxyrXcIhuBIesHJxLimOI6bqMZSf1bpZHA7rfNotxZQQZzO-dCP-DuXplLz3Zsx49lpPyPery_uLb_Xt3fXNxZfb2rW9KDUVzrXOe98az4yRklupUFjqObhOeOc5StvK1lJrvPAttR3raDdYkHRwQ3tCPu3_7lL8tWAuegrZ4TiaGeOSNZWyV4pSEG9AW94xrjq1onyPuhRzTuj1LoXJpCdNQT-r11u9V6-f1Wvo9ap-Pfv4mrDYCYd_R39dr8DnPYCrkoeASWcXcF5FhoSu6CGG_yf8AaoXmLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634724878</pqid></control><display><type>article</type><title>Design of a robust model predictive controller with reduced computational complexity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Razi, M. ; Haeri, M.</creator><creatorcontrib>Razi, M. ; Haeri, M.</creatorcontrib><description>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2014.09.008</identifier><identifier>PMID: 25440952</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Complexity ; Computation ; Computational complexity ; Constraints ; Linear matrix inequality ; Mathematical analysis ; Mathematical models ; Model predictive control ; Optimization ; Predictive control ; Reduction ; Robustness ; Sampling</subject><ispartof>ISA transactions, 2014-11, Vol.53 (6), p.1754-1759</ispartof><rights>2014 ISA</rights><rights>Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</citedby><cites>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2014.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25440952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Razi, M.</creatorcontrib><creatorcontrib>Haeri, M.</creatorcontrib><title>Design of a robust model predictive controller with reduced computational complexity</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</description><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Constraints</subject><subject>Linear matrix inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Reduction</subject><subject>Robustness</subject><subject>Sampling</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O3TAQRi3UCi4_b1BVWXaTMHZsx9lUqihQJCQ2dG3Zzrj1VRLf2g6Ut2_g0i4rVqOZOTOfdAj5QKGhQOX5tgnZlGQaBpQ30DcA6oBsqOr6mgFj78gGgPY1iE4dkeOctwDARK8OyRETnEMv2Ibcf8UcfsxV9JWpUrRLLtUUBxyrXcIhuBIesHJxLimOI6bqMZSf1bpZHA7rfNotxZQQZzO-dCP-DuXplLz3Zsx49lpPyPery_uLb_Xt3fXNxZfb2rW9KDUVzrXOe98az4yRklupUFjqObhOeOc5StvK1lJrvPAttR3raDdYkHRwQ3tCPu3_7lL8tWAuegrZ4TiaGeOSNZWyV4pSEG9AW94xrjq1onyPuhRzTuj1LoXJpCdNQT-r11u9V6-f1Wvo9ap-Pfv4mrDYCYd_R39dr8DnPYCrkoeASWcXcF5FhoSu6CGG_yf8AaoXmLc</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Razi, M.</creator><creator>Haeri, M.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Design of a robust model predictive controller with reduced computational complexity</title><author>Razi, M. ; Haeri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Constraints</topic><topic>Linear matrix inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Reduction</topic><topic>Robustness</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razi, M.</creatorcontrib><creatorcontrib>Haeri, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razi, M.</au><au>Haeri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a robust model predictive controller with reduced computational complexity</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2014-11</date><risdate>2014</risdate><volume>53</volume><issue>6</issue><spage>1754</spage><epage>1759</epage><pages>1754-1759</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25440952</pmid><doi>10.1016/j.isatra.2014.09.008</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2014-11, Vol.53 (6), p.1754-1759
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1669881105
source ScienceDirect Journals (5 years ago - present)
subjects Complexity
Computation
Computational complexity
Constraints
Linear matrix inequality
Mathematical analysis
Mathematical models
Model predictive control
Optimization
Predictive control
Reduction
Robustness
Sampling
title Design of a robust model predictive controller with reduced computational complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20robust%20model%20predictive%20controller%20with%20reduced%20computational%20complexity&rft.jtitle=ISA%20transactions&rft.au=Razi,%20M.&rft.date=2014-11&rft.volume=53&rft.issue=6&rft.spage=1754&rft.epage=1759&rft.pages=1754-1759&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2014.09.008&rft_dat=%3Cproquest_cross%3E1669881105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634724878&rft_id=info:pmid/25440952&rft_els_id=S001905781400233X&rfr_iscdi=true