Design of a robust model predictive controller with reduced computational complexity
The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector i...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2014-11, Vol.53 (6), p.1754-1759 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1759 |
---|---|
container_issue | 6 |
container_start_page | 1754 |
container_title | ISA transactions |
container_volume | 53 |
creator | Razi, M. Haeri, M. |
description | The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably. |
doi_str_mv | 10.1016/j.isatra.2014.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669881105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001905781400233X</els_id><sourcerecordid>1669881105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</originalsourceid><addsrcrecordid>eNqNkM1O3TAQRi3UCi4_b1BVWXaTMHZsx9lUqihQJCQ2dG3Zzrj1VRLf2g6Ut2_g0i4rVqOZOTOfdAj5QKGhQOX5tgnZlGQaBpQ30DcA6oBsqOr6mgFj78gGgPY1iE4dkeOctwDARK8OyRETnEMv2Ibcf8UcfsxV9JWpUrRLLtUUBxyrXcIhuBIesHJxLimOI6bqMZSf1bpZHA7rfNotxZQQZzO-dCP-DuXplLz3Zsx49lpPyPery_uLb_Xt3fXNxZfb2rW9KDUVzrXOe98az4yRklupUFjqObhOeOc5StvK1lJrvPAttR3raDdYkHRwQ3tCPu3_7lL8tWAuegrZ4TiaGeOSNZWyV4pSEG9AW94xrjq1onyPuhRzTuj1LoXJpCdNQT-r11u9V6-f1Wvo9ap-Pfv4mrDYCYd_R39dr8DnPYCrkoeASWcXcF5FhoSu6CGG_yf8AaoXmLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634724878</pqid></control><display><type>article</type><title>Design of a robust model predictive controller with reduced computational complexity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Razi, M. ; Haeri, M.</creator><creatorcontrib>Razi, M. ; Haeri, M.</creatorcontrib><description>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2014.09.008</identifier><identifier>PMID: 25440952</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Complexity ; Computation ; Computational complexity ; Constraints ; Linear matrix inequality ; Mathematical analysis ; Mathematical models ; Model predictive control ; Optimization ; Predictive control ; Reduction ; Robustness ; Sampling</subject><ispartof>ISA transactions, 2014-11, Vol.53 (6), p.1754-1759</ispartof><rights>2014 ISA</rights><rights>Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</citedby><cites>FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2014.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25440952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Razi, M.</creatorcontrib><creatorcontrib>Haeri, M.</creatorcontrib><title>Design of a robust model predictive controller with reduced computational complexity</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</description><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Constraints</subject><subject>Linear matrix inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Reduction</subject><subject>Robustness</subject><subject>Sampling</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O3TAQRi3UCi4_b1BVWXaTMHZsx9lUqihQJCQ2dG3Zzrj1VRLf2g6Ut2_g0i4rVqOZOTOfdAj5QKGhQOX5tgnZlGQaBpQ30DcA6oBsqOr6mgFj78gGgPY1iE4dkeOctwDARK8OyRETnEMv2Ibcf8UcfsxV9JWpUrRLLtUUBxyrXcIhuBIesHJxLimOI6bqMZSf1bpZHA7rfNotxZQQZzO-dCP-DuXplLz3Zsx49lpPyPery_uLb_Xt3fXNxZfb2rW9KDUVzrXOe98az4yRklupUFjqObhOeOc5StvK1lJrvPAttR3raDdYkHRwQ3tCPu3_7lL8tWAuegrZ4TiaGeOSNZWyV4pSEG9AW94xrjq1onyPuhRzTuj1LoXJpCdNQT-r11u9V6-f1Wvo9ap-Pfv4mrDYCYd_R39dr8DnPYCrkoeASWcXcF5FhoSu6CGG_yf8AaoXmLc</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Razi, M.</creator><creator>Haeri, M.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Design of a robust model predictive controller with reduced computational complexity</title><author>Razi, M. ; Haeri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-15cc3cfff3af2aa664b68e5b1f40c75fcf4e6b363b1baf5f31b72717db061dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Constraints</topic><topic>Linear matrix inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Reduction</topic><topic>Robustness</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razi, M.</creatorcontrib><creatorcontrib>Haeri, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razi, M.</au><au>Haeri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a robust model predictive controller with reduced computational complexity</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2014-11</date><risdate>2014</risdate><volume>53</volume><issue>6</issue><spage>1754</spage><epage>1759</epage><pages>1754-1759</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25440952</pmid><doi>10.1016/j.isatra.2014.09.008</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2014-11, Vol.53 (6), p.1754-1759 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669881105 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Complexity Computation Computational complexity Constraints Linear matrix inequality Mathematical analysis Mathematical models Model predictive control Optimization Predictive control Reduction Robustness Sampling |
title | Design of a robust model predictive controller with reduced computational complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20robust%20model%20predictive%20controller%20with%20reduced%20computational%20complexity&rft.jtitle=ISA%20transactions&rft.au=Razi,%20M.&rft.date=2014-11&rft.volume=53&rft.issue=6&rft.spage=1754&rft.epage=1759&rft.pages=1754-1759&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2014.09.008&rft_dat=%3Cproquest_cross%3E1669881105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634724878&rft_id=info:pmid/25440952&rft_els_id=S001905781400233X&rfr_iscdi=true |