Design of a robust model predictive controller with reduced computational complexity

The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2014-11, Vol.53 (6), p.1754-1759
Hauptverfasser: Razi, M., Haeri, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.
ISSN:0019-0578
1879-2022
DOI:10.1016/j.isatra.2014.09.008