Evolution of the microstructure and mechanical properties during fabrication of mini-tubes from a biomedical β-titanium alloy
The processing of Ti-25Nb-3Mo-3Zr-2Sn tubes with outside diameters of 5.6-8.0 mm and wall-thicknesses of 0.7-1.0 mm were investigated in order to study the evolution of microstructure and mechanical properties and their impact on the processing of the tubes. The annealed small tubes with single β ph...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2015-02, Vol.42, p.207-218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The processing of Ti-25Nb-3Mo-3Zr-2Sn tubes with outside diameters of 5.6-8.0 mm and wall-thicknesses of 0.7-1.0 mm were investigated in order to study the evolution of microstructure and mechanical properties and their impact on the processing of the tubes. The annealed small tubes with single β phase microstructures exhibit double yielding during tensile tests. The onset of martensitic phase transformation was observed to occur after the lowest point of the strain hardening. Cold rolling also activates the formation of the stress induced martensitic α″ phase. Its volume fraction increased with increasing ε. The rate of strain hardening and the modulus of the tubes are related to the stress induced transformation of the β phase to the α″ phase. The stress induced α″ slightly improves the yield strength of the tubes at low levels of strain. However, larger strains result in grain growth during annealing, which diminishes the mechanical properties. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2014.11.013 |