Cross-linking xanthan and other compounds with glycerol

In a waterless or near-waterless environment glycerol's hydroxyl groups react with xanthan's functional groups to make glycerol cross-linked xanthan (GCX) since not enough water is present to inhibit glycerol-xanthan reactions. The water, formed during cross-linking, in fact catalyzes the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food hydrocolloids 2015-02, Vol.44, p.129-135
Hauptverfasser: Bilanovic, Dragoljub, Starosvetsky, Jeanna, Armon, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a waterless or near-waterless environment glycerol's hydroxyl groups react with xanthan's functional groups to make glycerol cross-linked xanthan (GCX) since not enough water is present to inhibit glycerol-xanthan reactions. The water, formed during cross-linking, in fact catalyzes the unwinding of xanthan's double-helix thus making functional groups of its side chains and of its backbone more accessible for cross-linking. Functional groups of xanthan's side chains and those in its backbone are cross-linked with glycerol monomers and oligomers. Glycerol monomers and its oligomers cross-link xanthan when glycerol to xanthan weight ratio is smaller than 27.6. Hardness increases with an increase of xanthan to glycerol ratio; GCX made with 50% wt xanthan is a hard solid material almost 40 times harder than GCX gel made with 5% wt xanthan. A gram of GCX absorbs more than 39 g of water. In a waterless or near-waterless environment glycerol cross-links xanthan and other bio-polymers. Materials made by glycerol cross-linking of bio-polymers can be used as hydrogels, absorbents, coatings, carriers in controlled delivery of chemicals, films, membranes and are of interest for those and other applications in agriculture, food, pharmaceutical and other industries. Using glycerol to cross-link bio-polymers and other compounds will also help decrease the pressure on the water resources and minimize pollution of the environment. [Display omitted] •In waterless and near waterless environment glycerol cross-links xanthan and other bio-polymers.•Hardness increases as weight percentage of bio-polymer increases.•A gram of glycerol cross-linked xanthan absorbs almost 40 g of water.
ISSN:0268-005X
1873-7137
DOI:10.1016/j.foodhyd.2014.09.024