Vehicle State Estimation Based on IEKF-APF

Side slip angle and yaw rate are the important control parameters of vehicle stability control system, and getting accurate state information of driving process is the key issue of control system research. A common estimation method based on the estimation theory is that using sensors to get easily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2014-11, Vol.50 (22), p.136-141
Hauptverfasser: Shen, Fapeng, Zhao, Youqun, Sun, Qiuyun, Lin, Fen, Wang, Wei
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Side slip angle and yaw rate are the important control parameters of vehicle stability control system, and getting accurate state information of driving process is the key issue of control system research. A common estimation method based on the estimation theory is that using sensors to get easily measured variables, and then estimating the key state variables which are difficult to measure. A new particle filtering algorithm is proposed to estimate vehicle key states with a 7-DOF nonlinear vehicle dynamic model which contained constant noise and nonlinear tire model. For particle degradation during particle filtering process, the iterative extended Kalman filtering algorithm is used to produce importance density function which is more close to the true state, and auxiliary particle filtering algorithm with the latest observation information is used to resample particle with the observation. The iterative extended Kalman filtering-auxiliary particle filtering algorithm (IEKF-APF) combines of the above two al
ISSN:0577-6686
DOI:10.3901/JME.2014.22.136