The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies
Diffraction patterns and ftir spectra of halloysite. RH – raw halloysite, H – mineral light fraction of halloysite, BH – bleached halloysite, ATH25 and ATH50 – acid-treated halloysite. [Display omitted] •FTIR, XRF, and XRD studies of raw and modified halloysite were performed.•The procedures of hall...
Gespeichert in:
Veröffentlicht in: | Journal of molecular structure 2015-03, Vol.1084, p.16-22 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diffraction patterns and ftir spectra of halloysite. RH – raw halloysite, H – mineral light fraction of halloysite, BH – bleached halloysite, ATH25 and ATH50 – acid-treated halloysite. [Display omitted]
•FTIR, XRF, and XRD studies of raw and modified halloysite were performed.•The procedures of halloysite activation by bleaching and acid treatment were presented.•FTIR spectra of halloysite samples show characteristic bands for the kaolin minerals.•Activation clearly affects the changes in the structure and composition of halloysite.
The effect of chemical modification of halloysite from a Polish strip mine “Dunino” on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700–3600cm−1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium–silicon skeleton in the 1400–1000cm−1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample. |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/j.molstruc.2014.12.008 |