Chaos for successive maxima map implies chaos for the original map
τ is a continuous map on a metric compact space X . For a continuous function ϕ : X → R , we consider a one-dimensional map T (possibly multi-valued) which sends a local ϕ -maximum on τ trajectory to the next one: consecutive maxima map. The idea originated with famous Lorenz’s paper on strange attr...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2015-02, Vol.79 (3), p.2165-2175 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | τ
is a continuous map on a metric compact space
X
. For a continuous function
ϕ
:
X
→
R
, we consider a one-dimensional map
T
(possibly multi-valued) which sends a local
ϕ
-maximum on
τ
trajectory to the next one: consecutive maxima map. The idea originated with famous Lorenz’s paper on strange attractor. We prove that if
T
has a horseshoe disjoint from fixed points, then
τ
is in some sense chaotic, i.e., it has a turbulent trajectory and thus a continuous invariant measure. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-014-1802-6 |