Chaos for successive maxima map implies chaos for the original map

τ is a continuous map on a metric compact space X . For a continuous function ϕ : X → R , we consider a one-dimensional map T (possibly multi-valued) which sends a local ϕ -maximum on τ trajectory to the next one: consecutive maxima map. The idea originated with famous Lorenz’s paper on strange attr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2015-02, Vol.79 (3), p.2165-2175
Hauptverfasser: Boyarsky, Abraham, Eslami, Peyman, Góra, Paweł, Li, Zhenyang, Meddaugh, Jonathan, Raines, Brian E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:τ is a continuous map on a metric compact space X . For a continuous function ϕ : X → R , we consider a one-dimensional map T (possibly multi-valued) which sends a local ϕ -maximum on τ trajectory to the next one: consecutive maxima map. The idea originated with famous Lorenz’s paper on strange attractor. We prove that if T has a horseshoe disjoint from fixed points, then τ is in some sense chaotic, i.e., it has a turbulent trajectory and thus a continuous invariant measure.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-014-1802-6