Height and attitude active disturbance rejection controller design of a small-scale helicopter

Small-scale helicopters are very attractive because of their unique features. However, autonomous flight control for small-scale helicopters is still a challenging work because they are naturally unstable, strongly nonlinear, and sensitive to disturbances. In this paper, we focus on the design of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2015-03, Vol.58 (3), p.139-155
Hauptverfasser: Tang, Shuai, Yang, QiuHui, Qian, ShaoKe, Zheng, ZhiQiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small-scale helicopters are very attractive because of their unique features. However, autonomous flight control for small-scale helicopters is still a challenging work because they are naturally unstable, strongly nonlinear, and sensitive to disturbances. In this paper, we focus on the design of a height and attitude active disturbance rejection controller (ADRC) for a small-scale helicopter constructed in our lab. Firstly, a compre- hensive nonlinear model for the platform is presented, which is obtained through first principles modeling and system identification. The controller is designed using backstepping technique incorporated with extended state observer (ESO), which is used to estimate the unknown disturbances. Then~ the estimate is introduced into the control law to compensate for the disturbances. The design specifications of military rotorcraft are introduced to guide the controller design to achieve specified control performance. Considering the physical limitations, reference models are designed to shape the desired control responses. At last, several flight simulations are carried out to validate the effectiveness and robustness of the proposed controller. The results show that the proposed controller works well and Level 1 performance can be achieved.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-014-5206-5