Parity-symmetry-adapted coherent states and entanglement in quantum phase transitions of vibron models
We propose coherent ('Schrödinger cat-like') states adapted to the parity symmetry providing a remarkable variational description of the ground and first excited states of vibron models for finite (N)-size molecules. Vibron models undergo a quantum shape phase transition (from linear to be...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-09, Vol.45 (36), p.365301-1-365301-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose coherent ('Schrödinger cat-like') states adapted to the parity symmetry providing a remarkable variational description of the ground and first excited states of vibron models for finite (N)-size molecules. Vibron models undergo a quantum shape phase transition (from linear to bent) at a critical value ξc of a control parameter. These trial cat states reveal a sudden increase in vibration-rotation entanglement linear (L) and von Neumann (S) entropies from zero to (to be compared with L(N)max(ξ) = 1 − 1 (N + 1)) and , respectively, above the critical point, ξ > ξc, in agreement with exact numerical calculations. We also compute inverse participation ratios, for which these cat states capture a sudden delocalization of the ground-state wave packet across the critical point. Analytic expressions for entanglement entropies and inverse participation ratios of variational states, as functions of N and ξ, are given in terms of hypergeometric functions. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/45/36/365301 |