Compatible convergence estimates in the method of refinement by higher-order differences

We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2015, Vol.51 (1), p.107-115
Hauptverfasser: Berikelashvili, G. K., Midodashvili, B. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 107
container_title Differential equations
container_volume 51
creator Berikelashvili, G. K.
Midodashvili, B. G.
description We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate O (| h | m ) in the discrete L 2 -norm provided that the solution of the original problem belongs to the Sobolev space with exponent m ∈ [2, 4].
doi_str_mv 10.1134/S0012266115010103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669855459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669855459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qmSZNk6Ms_gPBgwreStNOtl22yZp0hf32pqwHUWQOc3i_95h5hJwDuwLg4vqFMchzKQEKBmn4AZmBZCrjTPFDMpvkbNKPyUmMK8aYLqGYkfeFHzb12Js10sa7TwxLdA1SjGM_1CNG2js6dkgHHDvfUm9pQNs7HNCN1Oxo1y87DJkPLQba9tZimALiKTmy9Tri2feek7e729fFQ_b0fP-4uHnKGi70mBWmrPPaSptDW2ojQAqNVkuDTEotCt0YLbgyJUejTaKBGcWTrkrRiFrzObnc526C_9ims6uhjw2u17VDv40VpBhVFCkpoRe_0JXfBpeuS1QhVKl4LhMFe6oJPsb0bLUJqYqwq4BVU9fVn66TJ997YmLdEsOP5H9NXxmGf6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654878326</pqid></control><display><type>article</type><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><source>SpringerLink Journals - AutoHoldings</source><creator>Berikelashvili, G. K. ; Midodashvili, B. G.</creator><creatorcontrib>Berikelashvili, G. K. ; Midodashvili, B. G.</creatorcontrib><description>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate O (| h | m ) in the discrete L 2 -norm provided that the solution of the original problem belongs to the Sobolev space with exponent m ∈ [2, 4].</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266115010103</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Compatibility ; Constants ; Convergence ; Difference and Functional Equations ; Differential equations ; Dirichlet problem ; Estimates ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Numerical Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Sobolev space ; Studies</subject><ispartof>Differential equations, 2015, Vol.51 (1), p.107-115</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</citedby><cites>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266115010103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266115010103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Berikelashvili, G. K.</creatorcontrib><creatorcontrib>Midodashvili, B. G.</creatorcontrib><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate O (| h | m ) in the discrete L 2 -norm provided that the solution of the original problem belongs to the Sobolev space with exponent m ∈ [2, 4].</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Compatibility</subject><subject>Constants</subject><subject>Convergence</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qmSZNk6Ms_gPBgwreStNOtl22yZp0hf32pqwHUWQOc3i_95h5hJwDuwLg4vqFMchzKQEKBmn4AZmBZCrjTPFDMpvkbNKPyUmMK8aYLqGYkfeFHzb12Js10sa7TwxLdA1SjGM_1CNG2js6dkgHHDvfUm9pQNs7HNCN1Oxo1y87DJkPLQba9tZimALiKTmy9Tri2feek7e729fFQ_b0fP-4uHnKGi70mBWmrPPaSptDW2ojQAqNVkuDTEotCt0YLbgyJUejTaKBGcWTrkrRiFrzObnc526C_9ims6uhjw2u17VDv40VpBhVFCkpoRe_0JXfBpeuS1QhVKl4LhMFe6oJPsb0bLUJqYqwq4BVU9fVn66TJ997YmLdEsOP5H9NXxmGf6Y</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Berikelashvili, G. K.</creator><creator>Midodashvili, B. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2015</creationdate><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><author>Berikelashvili, G. K. ; Midodashvili, B. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Compatibility</topic><topic>Constants</topic><topic>Convergence</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berikelashvili, G. K.</creatorcontrib><creatorcontrib>Midodashvili, B. G.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berikelashvili, G. K.</au><au>Midodashvili, B. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compatible convergence estimates in the method of refinement by higher-order differences</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate O (| h | m ) in the discrete L 2 -norm provided that the solution of the original problem belongs to the Sobolev space with exponent m ∈ [2, 4].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266115010103</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2015, Vol.51 (1), p.107-115
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_1669855459
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Approximation
Boundary conditions
Compatibility
Constants
Convergence
Difference and Functional Equations
Differential equations
Dirichlet problem
Estimates
Mathematical analysis
Mathematics
Mathematics and Statistics
Norms
Numerical Methods
Ordinary Differential Equations
Partial Differential Equations
Sobolev space
Studies
title Compatible convergence estimates in the method of refinement by higher-order differences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compatible%20convergence%20estimates%20in%20the%20method%20of%20refinement%20by%20higher-order%20differences&rft.jtitle=Differential%20equations&rft.au=Berikelashvili,%20G.%20K.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266115010103&rft_dat=%3Cproquest_cross%3E1669855459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654878326&rft_id=info:pmid/&rfr_iscdi=true