Compatible convergence estimates in the method of refinement by higher-order differences
We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is con...
Gespeichert in:
Veröffentlicht in: | Differential equations 2015, Vol.51 (1), p.107-115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | Differential equations |
container_volume | 51 |
creator | Berikelashvili, G. K. Midodashvili, B. G. |
description | We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate
O
(|
h
|
m
) in the discrete
L
2
-norm provided that the solution of the original problem belongs to the Sobolev space with exponent
m
∈ [2, 4]. |
doi_str_mv | 10.1134/S0012266115010103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669855459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669855459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qmSZNk6Ms_gPBgwreStNOtl22yZp0hf32pqwHUWQOc3i_95h5hJwDuwLg4vqFMchzKQEKBmn4AZmBZCrjTPFDMpvkbNKPyUmMK8aYLqGYkfeFHzb12Js10sa7TwxLdA1SjGM_1CNG2js6dkgHHDvfUm9pQNs7HNCN1Oxo1y87DJkPLQba9tZimALiKTmy9Tri2feek7e729fFQ_b0fP-4uHnKGi70mBWmrPPaSptDW2ojQAqNVkuDTEotCt0YLbgyJUejTaKBGcWTrkrRiFrzObnc526C_9ims6uhjw2u17VDv40VpBhVFCkpoRe_0JXfBpeuS1QhVKl4LhMFe6oJPsb0bLUJqYqwq4BVU9fVn66TJ997YmLdEsOP5H9NXxmGf6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654878326</pqid></control><display><type>article</type><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><source>SpringerLink Journals - AutoHoldings</source><creator>Berikelashvili, G. K. ; Midodashvili, B. G.</creator><creatorcontrib>Berikelashvili, G. K. ; Midodashvili, B. G.</creatorcontrib><description>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate
O
(|
h
|
m
) in the discrete
L
2
-norm provided that the solution of the original problem belongs to the Sobolev space with exponent
m
∈ [2, 4].</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266115010103</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Compatibility ; Constants ; Convergence ; Difference and Functional Equations ; Differential equations ; Dirichlet problem ; Estimates ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Numerical Methods ; Ordinary Differential Equations ; Partial Differential Equations ; Sobolev space ; Studies</subject><ispartof>Differential equations, 2015, Vol.51 (1), p.107-115</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</citedby><cites>FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266115010103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266115010103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Berikelashvili, G. K.</creatorcontrib><creatorcontrib>Midodashvili, B. G.</creatorcontrib><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate
O
(|
h
|
m
) in the discrete
L
2
-norm provided that the solution of the original problem belongs to the Sobolev space with exponent
m
∈ [2, 4].</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Compatibility</subject><subject>Constants</subject><subject>Convergence</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qmSZNk6Ms_gPBgwreStNOtl22yZp0hf32pqwHUWQOc3i_95h5hJwDuwLg4vqFMchzKQEKBmn4AZmBZCrjTPFDMpvkbNKPyUmMK8aYLqGYkfeFHzb12Js10sa7TwxLdA1SjGM_1CNG2js6dkgHHDvfUm9pQNs7HNCN1Oxo1y87DJkPLQba9tZimALiKTmy9Tri2feek7e729fFQ_b0fP-4uHnKGi70mBWmrPPaSptDW2ojQAqNVkuDTEotCt0YLbgyJUejTaKBGcWTrkrRiFrzObnc526C_9ims6uhjw2u17VDv40VpBhVFCkpoRe_0JXfBpeuS1QhVKl4LhMFe6oJPsb0bLUJqYqwq4BVU9fVn66TJ997YmLdEsOP5H9NXxmGf6Y</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Berikelashvili, G. K.</creator><creator>Midodashvili, B. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2015</creationdate><title>Compatible convergence estimates in the method of refinement by higher-order differences</title><author>Berikelashvili, G. K. ; Midodashvili, B. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5b7a2af6f21d79b41649ef96be0669459cb9438b73eb9b5b710b8396b874c4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Compatibility</topic><topic>Constants</topic><topic>Convergence</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berikelashvili, G. K.</creatorcontrib><creatorcontrib>Midodashvili, B. G.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berikelashvili, G. K.</au><au>Midodashvili, B. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compatible convergence estimates in the method of refinement by higher-order differences</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2015</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate
O
(|
h
|
m
) in the discrete
L
2
-norm provided that the solution of the original problem belongs to the Sobolev space with exponent
m
∈ [2, 4].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266115010103</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2015, Vol.51 (1), p.107-115 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669855459 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Approximation Boundary conditions Compatibility Constants Convergence Difference and Functional Equations Differential equations Dirichlet problem Estimates Mathematical analysis Mathematics Mathematics and Statistics Norms Numerical Methods Ordinary Differential Equations Partial Differential Equations Sobolev space Studies |
title | Compatible convergence estimates in the method of refinement by higher-order differences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compatible%20convergence%20estimates%20in%20the%20method%20of%20refinement%20by%20higher-order%20differences&rft.jtitle=Differential%20equations&rft.au=Berikelashvili,%20G.%20K.&rft.date=2015&rft.volume=51&rft.issue=1&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266115010103&rft_dat=%3Cproquest_cross%3E1669855459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654878326&rft_id=info:pmid/&rfr_iscdi=true |