Compatible convergence estimates in the method of refinement by higher-order differences

We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2015, Vol.51 (1), p.107-115
Hauptverfasser: Berikelashvili, G. K., Midodashvili, B. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Dirichlet problem for an elliptic equation with constant coefficients, which is solved by a difference scheme of second-order accuracy. By using the approximate solution, we correct the right-hand side of the difference scheme. We show that the solution of the corrected scheme is convergent at the rate O (| h | m ) in the discrete L 2 -norm provided that the solution of the original problem belongs to the Sobolev space with exponent m ∈ [2, 4].
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266115010103