Matrix superpotentials and superintegrable systems for arbitrary spin

A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-06, Vol.45 (22), p.225205-13
1. Verfasser: Nikitin, A G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202).
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8113/45/22/225205