Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties

Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2015-01, Vol.8 (1), p.82-96
Hauptverfasser: Xie, Shuifen, Liu, Xiang Yang, Xia, Younan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-014-0674-x