Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs
Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(benzene, toluene and ethyl acetate) were examined. The Mn-Ce oxalate precursor was ob...
Gespeichert in:
Veröffentlicht in: | Journal of rare earths 2015, Vol.33 (1), p.62-69 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipitation/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs(benzene, toluene and ethyl acetate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction(XRD), Brunauer-Emmett-Teller(BET), scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), hydrogen temperature programmed reduction(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method(Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds(VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxygen species which resulted in the enhancement of catalytic abilities. |
---|---|
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60384-7 |