Acyclic improper colouring of graphs with maximum degree 4

A k-colouring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclie k-eolourings such that each colour class induces a graph with a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2014-12, Vol.57 (12), p.2485-2494
Hauptverfasser: Fiedorowicz, Anna, Sidorowicz, Elżbieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A k-colouring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclie k-eolourings such that each colour class induces a graph with a given (hereditary) property. In particular, we consider aeyclic k-eolourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyelic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree 4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with A(G) ≤ 4 can be acyelically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-014-4828-9