Shannon entropy, Fisher information and uncertainty relations for log-periodic oscillators
We calculate the time-dependent Shannon (Sx and Sp) entropy and Fisher (Fx and Fp) information of three log-periodic oscillators. We obtain a general expression for Sx,p and Fx,p in the state n=0 in terms of ρ, a c-number quantity satisfying a nonlinear differential equation. For two out of three os...
Gespeichert in:
Veröffentlicht in: | Physica A 2015-04, Vol.423, p.72-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the time-dependent Shannon (Sx and Sp) entropy and Fisher (Fx and Fp) information of three log-periodic oscillators. We obtain a general expression for Sx,p and Fx,p in the state n=0 in terms of ρ, a c-number quantity satisfying a nonlinear differential equation. For two out of three oscillators Sx,p and Fx,p depend on time, but Sx+Sp and FxFp do not. The other oscillator behaves as the time-independent harmonic oscillator where Sx,p and Fx,p are all constants. Relations among the Fisher information and the Stam and Cramer–Rao inequalities are also discussed.
•We calculate the time-dependent Shannon entropy of three log-periodic oscillators.•We calculate the time-dependent Fisher information (FI) for the same oscillators.•Relations among the (FI) and the Stam and Cramer–Rao inequalities are discussed. |
---|---|
ISSN: | 0378-4371 1873-2119 |
DOI: | 10.1016/j.physa.2014.12.031 |