Shannon entropy, Fisher information and uncertainty relations for log-periodic oscillators

We calculate the time-dependent Shannon (Sx and Sp) entropy and Fisher (Fx and Fp) information of three log-periodic oscillators. We obtain a general expression for Sx,p and Fx,p in the state n=0 in terms of ρ, a c-number quantity satisfying a nonlinear differential equation. For two out of three os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2015-04, Vol.423, p.72-79
Hauptverfasser: Aguiar, V., Guedes, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the time-dependent Shannon (Sx and Sp) entropy and Fisher (Fx and Fp) information of three log-periodic oscillators. We obtain a general expression for Sx,p and Fx,p in the state n=0 in terms of ρ, a c-number quantity satisfying a nonlinear differential equation. For two out of three oscillators Sx,p and Fx,p depend on time, but Sx+Sp and FxFp do not. The other oscillator behaves as the time-independent harmonic oscillator where Sx,p and Fx,p are all constants. Relations among the Fisher information and the Stam and Cramer–Rao inequalities are also discussed. •We calculate the time-dependent Shannon entropy of three log-periodic oscillators.•We calculate the time-dependent Fisher information (FI) for the same oscillators.•Relations among the (FI) and the Stam and Cramer–Rao inequalities are discussed.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2014.12.031