Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation
In this paper, we first recall some results concerning the construction and the properties of quadratic B-splines over a refinement Δ of a quadrangulation ◊ of a planar domain introduced recently by Lamnii et al. Then we introduce the B-spline representation of Hermite interpolant, in the special sp...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2015-01, Vol.250, p.145-156 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first recall some results concerning the construction and the properties of quadratic B-splines over a refinement Δ of a quadrangulation ◊ of a planar domain introduced recently by Lamnii et al. Then we introduce the B-spline representation of Hermite interpolant, in the special space S21,0(Δ), of any polynomial or any piecewise polynomial over refined quadrangulation Δ of ◊. After that, we use this B-representation for constructing several superconvergent discrete quasi-interpolants. The new results that we present in this paper are an improvement and a generalization of those developed in the above cited paper. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.10.090 |