Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation

In this paper, we first recall some results concerning the construction and the properties of quadratic B-splines over a refinement Δ of a quadrangulation ◊ of a planar domain introduced recently by Lamnii et al. Then we introduce the B-spline representation of Hermite interpolant, in the special sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2015-01, Vol.250, p.145-156
Hauptverfasser: Sbibih, D., Serghini, A., Tijini, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first recall some results concerning the construction and the properties of quadratic B-splines over a refinement Δ of a quadrangulation ◊ of a planar domain introduced recently by Lamnii et al. Then we introduce the B-spline representation of Hermite interpolant, in the special space S21,0(Δ), of any polynomial or any piecewise polynomial over refined quadrangulation Δ of ◊. After that, we use this B-representation for constructing several superconvergent discrete quasi-interpolants. The new results that we present in this paper are an improvement and a generalization of those developed in the above cited paper.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.10.090