On 1324-avoiding permutations
We give an improved algorithm for counting the number of 1324-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length-4 pattern-avoiding permutations, the generating function in...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2015-03, Vol.64, p.50-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an improved algorithm for counting the number of 1324-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length-4 pattern-avoiding permutations, the generating function in this case does not have an algebraic singularity. Rather, the number of 1324-avoiding permutations of length n behaves asB⋅μn⋅μ1nσ⋅ng. We estimate μ=11.60±0.01, σ=1/2, μ1=0.040±0.0015, g=−1.1±0.2 and B=7±1.3. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2014.12.004 |