On 1324-avoiding permutations

We give an improved algorithm for counting the number of 1324-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length-4 pattern-avoiding permutations, the generating function in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2015-03, Vol.64, p.50-69
Hauptverfasser: Conway, Andrew R., Guttmann, Anthony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an improved algorithm for counting the number of 1324-avoiding permutations, resulting in 5 further terms of the generating function. We analyse the known coefficients and find compelling evidence that unlike other classical length-4 pattern-avoiding permutations, the generating function in this case does not have an algebraic singularity. Rather, the number of 1324-avoiding permutations of length n behaves asB⋅μn⋅μ1nσ⋅ng. We estimate μ=11.60±0.01, σ=1/2, μ1=0.040±0.0015, g=−1.1±0.2 and B=7±1.3.
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2014.12.004