Microstructural investigation of Nd-rich phase in sintered Nd-Fe-B magnets through electron microscopy
The distribution, morphologies and structures of intergranular Nd-rich phase in sintered Nd-Fe-B magnets were studied through electron microscopy. Backscattered electron (BSE) imaging revealed that Nd-rich particles with various morphologies and sizes were randomly distributed at the grain boundarie...
Gespeichert in:
Veröffentlicht in: | Journal of rare earths 2013-08, Vol.31 (8), p.765-771 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The distribution, morphologies and structures of intergranular Nd-rich phase in sintered Nd-Fe-B magnets were studied through electron microscopy. Backscattered electron (BSE) imaging revealed that Nd-rich particles with various morphologies and sizes were randomly distributed at the grain boundaries and the triple junctions of the tetragonal Nd2FelnB matrix. Through selected area electron diffraction (SAED) analysis under a systematic tilting condition, most intergranular Nd-rich phase particles, with sizes ranging from hundreds of nanometres to several micrometres, were identified as face-centred cubic (FCC) structure. Such particles possessed several approximate orientation relationships with their adjacent Nd2FelaB matrix grains, such as (002)Nd2Fe14B/ (200)FCC_Nd-rieh [120] Nd2Fe14B//[001]FCC Nd-fich, (002)Nd2Fe14B//(220)FCC_Nd-rich [110] Nd2Fe14B//[l12]FCC_Nd-rich, as well as (011)Nd2Fe14B// (13 1 )rcc Nd-rich [111 ] Nd2Fe14B//[ 114]FCC Nd_rich, which could be attributed to minimising interracial energy. The combination of high- resolution electron microscopy with energy-dispersive X-ray spectroscopy revealed the internal inhomogeneous nature of Nd-rich phases. The large lattice distortion and nanoscale-ordered structures within a single Nd2rich grain were observed. |
---|---|
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(12)60355-X |