Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference
We study long-haul Quasi-Single-mode (QSM) systems in which signals are transmitted in the fundamental modes of a few-mode fiber (FMF) while keeping other system components such as amplifiers and receivers are kept single-moded. The large-effective-area nature of the FMF fundamental modes improves s...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-02, Vol.23 (3), p.3156-3169 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study long-haul Quasi-Single-mode (QSM) systems in which signals are transmitted in the fundamental modes of a few-mode fiber (FMF) while keeping other system components such as amplifiers and receivers are kept single-moded. The large-effective-area nature of the FMF fundamental modes improves system nonlinear tolerance in the expense of mode coupling along FMF transmissions which induces multi-path interference (MPI) and needs to be compensated. We analytically investigate 6-spatial-polarization mode QSM transmission systems in presence of MPI and show that in the weak coupling regime, the QSM channel is a Gaussian random process in frequency. MPI compensation filters are derived and performance penalties due to MPI and signal loss from higher-order modes are characterized. We also experimentally demonstrate 256 Gb/s polarization multiplexed (PM)-16-QAM QSM transmissions over a record distance of 2600 km with 100-km span using decision directed least mean square (DD-LMS) algorithm for MPI compensation. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.003156 |